Parameter estimation with the Markov Chain Monte Carlo method aided by evolutionary neural networks in a water hammer model
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21220%2F23%3A00374019" target="_blank" >RIV/68407700:21220/23:00374019 - isvavai.cz</a>
Result on the web
<a href="https://doi.org/10.1007/s40314-022-02162-0" target="_blank" >https://doi.org/10.1007/s40314-022-02162-0</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/s40314-022-02162-0" target="_blank" >10.1007/s40314-022-02162-0</a>
Alternative languages
Result language
angličtina
Original language name
Parameter estimation with the Markov Chain Monte Carlo method aided by evolutionary neural networks in a water hammer model
Original language description
Fast transients in pumps and valves may induce significant variations in pressures and flow rates throughout pipelines that can even cause structural damages. This computational work deals with parameter estimation of a water hammer model, with focus on a transient friction coefficient and an empirical parameter related to the pipeline elasticity. The hyperbolic water hammer model was solved with a total variation diminishing version of the weighted average flux finite volume scheme. Simulated pressure and flow rate measurements taken near the inlet and the outlet of the pipeline were used for the solution of the parameter estimation problem with Markov Chain Monte Carlo methods. This work aimed at the reduction of the computational time of the inverse problem solution with two different strategies: (1) the application of a recent parallel computation version of the Metropolis-Hastings algorithm; and (2) the use of a machine learning metamodel obtained with the evolutionary neural network algorithm and the approximation error model approach. These two approaches are compared in terms of the parameter estimation accuracies and associated computational times.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
20302 - Applied mechanics
Result continuities
Project
—
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2023
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
COMPUTATIONAL & APPLIED MATHEMATICS
ISSN
2238-3603
e-ISSN
1807-0302
Volume of the periodical
42
Issue of the periodical within the volume
1
Country of publishing house
DE - GERMANY
Number of pages
31
Pages from-to
—
UT code for WoS article
000910045700001
EID of the result in the Scopus database
2-s2.0-85145777715