All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Mechanical properties of ramie/flax hybrid natural fiber composites under different conditions

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21220%2F24%3A00369038" target="_blank" >RIV/68407700:21220/24:00369038 - isvavai.cz</a>

  • Result on the web

    <a href="https://doi.org/10.1007/s13399-023-04628-5" target="_blank" >https://doi.org/10.1007/s13399-023-04628-5</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1007/s13399-023-04628-5" target="_blank" >10.1007/s13399-023-04628-5</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Mechanical properties of ramie/flax hybrid natural fiber composites under different conditions

  • Original language description

    Hybrid ramie/flax natural fiber reinforcement along with epoxy resin is used as the matrix material in this research. Compression molding was adopted as the fabrication method. Ramie/flax at 40 wt. % and 1 cm fiber length showed a better tensile strength of 32.67 MPa than other combinations. Hybrid fiber combination from 30 to 40 wt. % created a strong compatibility between fiber/matrix phase and improved stress transfer behavior along with elastic deformation. Flexural strength results showed enhancement from 43.75 to 52.47 MPa with fiber addition and varying fiber length up to 40 wt. % and 0.5 cm. Impact strength of the hybrid combinations increased from 10.23 to 15.97 kJ/m2. A 5 % NaOH treatment had significant tensile properties varying from 28.42 to 32.67 MPa compared to untreated and 8 % surface treated fibers. Alkali treatment a revealed 49.83–52.47 MPa and 49.12–49.99 MPa flexural strength. Maximum tensile strength of 33.46 MPa was observed under a combination of 120 °C temperature, 12 MPa pressure, and 7 min duration. High pressure, high operating temperature and time, lead to a decline in the mechanical properties of the polymer composites. The SEM analysis showed that the combination with 40 wt. % natural fiber had good fiber distribution leading to better properties. Research works dealing with natural fiber addition, fabrication conditions, and surface treatments are rare.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    20505 - Composites (including laminates, reinforced plastics, cermets, combined natural and synthetic fibre fabrics; filled composites)

Result continuities

  • Project

  • Continuities

    V - Vyzkumna aktivita podporovana z jinych verejnych zdroju

Others

  • Publication year

    2024

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Biomass Conversion and Biorefinery

  • ISSN

    2190-6815

  • e-ISSN

    2190-6823

  • Volume of the periodical

    14

  • Issue of the periodical within the volume

    23

  • Country of publishing house

    DE - GERMANY

  • Number of pages

    12

  • Pages from-to

    29579-29590

  • UT code for WoS article

    001163765900001

  • EID of the result in the Scopus database

    2-s2.0-85168461161