High thermoelectric performance of multiwalled carbon nanotubes based ionogels
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21220%2F24%3A00372506" target="_blank" >RIV/68407700:21220/24:00372506 - isvavai.cz</a>
Result on the web
<a href="https://doi.org/10.1016/j.mtcomm.2024.108334" target="_blank" >https://doi.org/10.1016/j.mtcomm.2024.108334</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.mtcomm.2024.108334" target="_blank" >10.1016/j.mtcomm.2024.108334</a>
Alternative languages
Result language
angličtina
Original language name
High thermoelectric performance of multiwalled carbon nanotubes based ionogels
Original language description
Ionogels have emerged as promising thermoelectric materials with Seebeck coefficient 2–3 orders of magnitude higher than Seebeck coefficient of their inorganic counter parts. However, they suffer from the problem of low ionic conductivity, which can be improved with the addition of inorganic nanofillers to the ionogels. In the present work, thermoelectric performance of multiwall carbon nanotubes (MWCNTs) based ionogels (IGs) has been investigated. IGs were synthesized via in situ radical polymerization of polyethylene glycol 200 dimethacrylate (PEG200DMA) difunctional monomer in the presence of 1-butyl-3-methyl imidazolium tetrafluoroborate (an ionic liquid) and MWCNTs. Three composites namely MWCNTs-0.25, MWCNTs-0.5 and MWCNTs-1 were prepared having the concentration of MWCNTs by 0.25, 0.5 and 1 wt% respectively. A remarkable 75.3% enhancement in ionic conductivity was achieved for the MWCNTs-1 wt% ionogel compared to the base IG at 40 °C. This substantial improvement can be attributed to the "breathing polymer chain model," which describes the dissociation of ion aggregates due to the interaction between the ionic liquid and polymer chains. In terms of thermoelectric performance amongst the MWCNT ionogels, 0.25 wt% MWCNT-based ionogels was the optimized concentration with very high Seebeck coefficient of 1.70 mV/K and power factor of 4.1 µW/m. K along with excellent thermal stability up to 386 °C. These high-performing ionogels hold great promise for efficient utilization of low-grade thermal energy.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
20501 - Materials engineering
Result continuities
Project
—
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2024
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Materials Today Communications
ISSN
2352-4928
e-ISSN
2352-4928
Volume of the periodical
2024 (38)
Issue of the periodical within the volume
03
Country of publishing house
US - UNITED STATES
Number of pages
9
Pages from-to
—
UT code for WoS article
001186805800001
EID of the result in the Scopus database
2-s2.0-85185390474