All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Machine learning approach towards laser powder bed fusion manufactured AlSi10Mg thin tubes in laser shock peening

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21220%2F24%3A00372639" target="_blank" >RIV/68407700:21220/24:00372639 - isvavai.cz</a>

  • Alternative codes found

    RIV/68378271:_____/24:00584910 RIV/68407700:21340/24:00372639

  • Result on the web

    <a href="https://doi.org/10.1177/02670844231221974" target="_blank" >https://doi.org/10.1177/02670844231221974</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1177/02670844231221974" target="_blank" >10.1177/02670844231221974</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Machine learning approach towards laser powder bed fusion manufactured AlSi10Mg thin tubes in laser shock peening

  • Original language description

    The industry's demand for intricate geometries has spurred research into additive manufacturing (AM). Customising material properties, including surface roughness, integrity and porosity reduction, are the key industrial goals. This necessitates a holistic approach integrating AM, laser shock peening (LSP) and non-planar geometry considerations. In this study, machine learning and neural networks offer a novel way to create intricate, abstract models capable of discerning complex process relationships. Our focus is on leveraging the certain range of laser parameters (energy, spot area, overlap) to identify optimal residual stress, average surface roughness, and porosity values. Confirmatory experiments demonstrate close agreement, with an 8% discrepancy between modelled and actual residual stress values. This approach's viability is evident even with limited datasets, provided proper precautions are taken.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    20501 - Materials engineering

Result continuities

  • Project

  • Continuities

    S - Specificky vyzkum na vysokych skolach<br>I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Others

  • Publication year

    2024

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Surface Engineering

  • ISSN

    0267-0844

  • e-ISSN

    1743-2944

  • Volume of the periodical

    40

  • Issue of the periodical within the volume

    1

  • Country of publishing house

    GB - UNITED KINGDOM

  • Number of pages

    7

  • Pages from-to

    66-72

  • UT code for WoS article

    001224938300001

  • EID of the result in the Scopus database