All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Modelling the weld cladding process to predict weld clad position and shape error

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21220%2F24%3A00374809" target="_blank" >RIV/68407700:21220/24:00374809 - isvavai.cz</a>

  • Result on the web

    <a href="https://doi.org/10.1007/s00170-024-13481-3" target="_blank" >https://doi.org/10.1007/s00170-024-13481-3</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1007/s00170-024-13481-3" target="_blank" >10.1007/s00170-024-13481-3</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Modelling the weld cladding process to predict weld clad position and shape error

  • Original language description

    Wire arc additive manufacturing (WAAM) is one of the most productive metal additive manufacturing methods. One of its most promising applications holds in the manufacturing of difficult-to-cut materials where production costs can be reduced with minimizing the time of machining and total tool costs. To develop a correct WAAM, technological processes for manufacturing complex-shaped components welding torch path corrections and welding power corrections have to be made especially in critical sections such as corners and sharp edges. A predictive mathematical model of the material cladding during the WAAM process has been developed for the purposes of generating an optimal toolpath of the WAAM clads. This predictive mathematical model is simplified to reflect the important physical phenomena in the weld pool but also to optimize computing time. In this paper, the principle of the mathematical model is described, and its functionality is verified by the welding experiments with five different welding power settings. For the initial calibration of the model parameters single straight-line weld clads with 5 different welding power settings (wire feeds) ranging from 5.0 to 8.6 m/min were investigated. 3D scans of these welded samples are used for the verification. With the calibrated simulation model, it was possible to predict the precise shape with a maximum deviation circa 0.20 mm. The start portions of the weld clads seem more complex having the deviation circa 0.30 mm. These are valuable results as the WAAM technology is generally considered to be reasonably rough.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    20301 - Mechanical engineering

Result continuities

  • Project

    <a href="/en/project/EF16_019%2F0000826" target="_blank" >EF16_019/0000826: Center of Advanced Aerospace Technology</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>S - Specificky vyzkum na vysokych skolach

Others

  • Publication year

    2024

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    The International Journal of Advanced Manufacturing Technology

  • ISSN

    0268-3768

  • e-ISSN

    1433-3015

  • Volume of the periodical

    132

  • Issue of the periodical within the volume

    5-6

  • Country of publishing house

    GB - UNITED KINGDOM

  • Number of pages

    12

  • Pages from-to

    2877-2888

  • UT code for WoS article

    001197327000001

  • EID of the result in the Scopus database

    2-s2.0-85189309417