All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Real-Time Vision-Based Fault Detection System for FDM 3D Printing Using Convolutional Neural Networks

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21220%2F24%3A00378534" target="_blank" >RIV/68407700:21220/24:00378534 - isvavai.cz</a>

  • Result on the web

    <a href="http://dx.doi.org/10.1109/ME61309.2024.10789707" target="_blank" >http://dx.doi.org/10.1109/ME61309.2024.10789707</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1109/ME61309.2024.10789707" target="_blank" >10.1109/ME61309.2024.10789707</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Real-Time Vision-Based Fault Detection System for FDM 3D Printing Using Convolutional Neural Networks

  • Original language description

    We present a real-time vision-based fault detection system for Fused Deposition Modeling (FDM) 3D printing, utilizing multiple You Only Look Once (YOLO) Convolutional Neural Network (CNN) models—YOLOv4 Tiny, YOLOv5, YOLOv8, and YOLOv10—to identify defects such as blobs, cracks, spaghetti, stringing, under-extrusion, and warping. Unlike previous studies that use single models, our system integrates these YOLO variants to enhance detection accuracy and incorporates an adaptive learning module for continuous improvement based on real-time data. The system logs and displays faults on a live camera feed, significantly improving quality control in additive manufacturing. Comparative analysis shows that YOLOv8 achieves a 7% increase in detection accuracy and a 30% reduction in print errors. This novel integration of multiple YOLO models with adaptive learning advances automation and reliability in 3D printing.

  • Czech name

  • Czech description

Classification

  • Type

    D - Article in proceedings

  • CEP classification

  • OECD FORD branch

    20205 - Automation and control systems

Result continuities

  • Project

  • Continuities

    S - Specificky vyzkum na vysokych skolach

Others

  • Publication year

    2024

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Article name in the collection

    2024 21st International Conference on Mechatronics - Mechatronika (ME)

  • ISBN

    979-8-3503-9490-0

  • ISSN

  • e-ISSN

  • Number of pages

    9

  • Pages from-to

  • Publisher name

    IEEE

  • Place of publication

    New Jersey

  • Event location

    Brno

  • Event date

    Dec 4, 2024

  • Type of event by nationality

    WRD - Celosvětová akce

  • UT code for WoS article

    001414274500021