Gaussian Complexities Based Decision Tree Pruning
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21230%2F04%3A03096739" target="_blank" >RIV/68407700:21230/04:03096739 - isvavai.cz</a>
Result on the web
—
DOI - Digital Object Identifier
—
Alternative languages
Result language
angličtina
Original language name
Gaussian Complexities Based Decision Tree Pruning
Original language description
We investigate a method for pruning of decision trees based on the complexity measure of a tree and its error rate. It uses the Gaussian complexity averages of a decision tree to estimate the error rate of classification. This complexity measure is data-dependent, so we expect it to allow the pruning to capture the dependencies in the data better than error based pruning methods or general complexity based pruning methods. We perform experiments that compare unpruned decision tree, decision tree prunedwith our method and decision tree pruned with Reduced Error Pruning method. Our results show that proposed method outperforms both mentioned methods
Czech name
Není k dispozici
Czech description
Není k dispozici
Classification
Type
D - Article in proceedings
CEP classification
JC - Computer hardware and software
OECD FORD branch
—
Result continuities
Project
—
Continuities
Z - Vyzkumny zamer (s odkazem do CEZ)
Others
Publication year
2004
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Article name in the collection
Cybernetics and Systems 2004
ISBN
3-85206-169-5
ISSN
—
e-ISSN
—
Number of pages
4
Pages from-to
719-722
Publisher name
Austrian Society for Cybernetics Studies
Place of publication
Vienna
Event location
Vienna
Event date
Apr 13, 2004
Type of event by nationality
WRD - Celosvětová akce
UT code for WoS article
—