Evaluation of ECG: Comparison of Decision Tree and Fuzzy Rules Induction
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21230%2F04%3A03096799" target="_blank" >RIV/68407700:21230/04:03096799 - isvavai.cz</a>
Result on the web
—
DOI - Digital Object Identifier
—
Alternative languages
Result language
angličtina
Original language name
Evaluation of ECG: Comparison of Decision Tree and Fuzzy Rules Induction
Original language description
This paper compares two different approaches to computer-aided analysis of ECG signals. ECG records are preprocessed by the wavelet transform, and the machine learning method of decision trees and fuzzy rules induction are used for classification. The wavelet transform allows good localisation of QRS complexes, P and T waves in time and amplitude. The average accuracy of detection of all events is above 87 per cent. For learning and further classification we use Quinlan's See5 application and FURL (FUzzy Rule Learner). We used the MIT-BIH database for experiments. Diverse settings of the parameters for decision tree generation (tree pruning, attribute selection, class sets) were examined. Two datasets and diverse settings of fuzzysets were examined aswell.
Czech name
Není k dispozici
Czech description
Není k dispozici
Classification
Type
D - Article in proceedings
CEP classification
JD - Use of computers, robotics and its application
OECD FORD branch
—
Result continuities
Project
—
Continuities
Z - Vyzkumny zamer (s odkazem do CEZ)
Others
Publication year
2004
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Article name in the collection
Cybernetics and Systems 2004
ISBN
3-85206-169-5
ISSN
—
e-ISSN
—
Number of pages
6
Pages from-to
713-718
Publisher name
Austrian Society for Cybernetics Studies
Place of publication
Vienna
Event location
Vienna
Event date
Apr 13, 2004
Type of event by nationality
WRD - Celosvětová akce
UT code for WoS article
—