On parameter-dependent Lyapunov functions for robust stability of linear systems
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21230%2F04%3A03106388" target="_blank" >RIV/68407700:21230/04:03106388 - isvavai.cz</a>
Result on the web
—
DOI - Digital Object Identifier
—
Alternative languages
Result language
angličtina
Original language name
On parameter-dependent Lyapunov functions for robust stability of linear systems
Original language description
For a linear system affected by real parametric uncertainty, this paper focuses on robust stability analysis via quadratic-in-the-state Lyapunov functions polynomially dependent on the parameters. The contribution is twofold. First, if n denotes the system order and m the number of parameters, it is shown that it is enough to seek a parameterdependent Lyapunov function of given degree 2nm in the parameters. Second, it is shown that robust stability can be assessed by globally minimizing a multivariate scalar polynomial related with this Lyapunov matrix. A hierarchy of LMI relaxations is proposed to solve this problem numerically, yielding simultaneously upper and lower bounds on the global minimum with guarantee of asymptotic convergence.
Czech name
Není k dispozici
Czech description
Není k dispozici
Classification
Type
A - Audiovisual production
CEP classification
BC - Theory and management systems
OECD FORD branch
—
Result continuities
Project
Result was created during the realization of more than one project. More information in the Projects tab.
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2004
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
ISBN
0-7803-8683-3
Place of publication
New York
Publisher/client name
—
Version
—
Carrier ID
neuvedeno