Contracting Optimally an Interval Matrix without Loosing Any Positive Semi-Definite Matrix Is a Tractable Problem
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21230%2F05%3A03107958" target="_blank" >RIV/68407700:21230/05:03107958 - isvavai.cz</a>
Result on the web
—
DOI - Digital Object Identifier
—
Alternative languages
Result language
angličtina
Original language name
Contracting Optimally an Interval Matrix without Loosing Any Positive Semi-Definite Matrix Is a Tractable Problem
Original language description
In this paper, we show that the problem of computing the smallest interval submatrix of a given interval matrix [A] which contains all symmetric positive semi-definite (PSD) matrices of [A], is a linear matrix inequality (LMI) problem, a convex optimization problem over the cone of positive semidefinite matrices, that can be solved in polynomial time. From a constraint viewpoint, this problem corresponds to projecting the global constraint PSD (A) over its domain [A]. Projecting such a global constraint, in a constraint propagation process, makes it possible to avoid the decomposition of the PSD constraint into primitive constraints and thus increases the efficiency and the accuracy of the resolution.
Czech name
Není k dispozici
Czech description
Není k dispozici
Classification
Type
J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)
CEP classification
BC - Theory and management systems
OECD FORD branch
—
Result continuities
Project
Result was created during the realization of more than one project. More information in the Projects tab.
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2005
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Reliable Computing
ISSN
1385-3139
e-ISSN
—
Volume of the periodical
11
Issue of the periodical within the volume
1
Country of publishing house
DE - GERMANY
Number of pages
17
Pages from-to
1-17
UT code for WoS article
—
EID of the result in the Scopus database
—