Propositionalization based relational subgroup discovery with RSD
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21230%2F06%3A03119295" target="_blank" >RIV/68407700:21230/06:03119295 - isvavai.cz</a>
Result on the web
—
DOI - Digital Object Identifier
—
Alternative languages
Result language
angličtina
Original language name
Propositionalization based relational subgroup discovery with RSD
Original language description
Relational rule learning algorithms are typically designed to construct classification and prediction rules. However, relational rule learning can be adapted also to subgroup discovery. This paper proposes a propositionalization approach to relational subgroup discovery, achieved through appropriately adapting rule learning and first-order feature construction. The proposed approach was successfully applied to standard ILP problems (East-West trains, King-Rook-King chess endgame and mutagenicity prediction) and two real-life problems (analysis of telephone calls and traffic accident analysis).
Czech name
Není k dispozici
Czech description
Není k dispozici
Classification
Type
J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)
CEP classification
JC - Computer hardware and software
OECD FORD branch
—
Result continuities
Project
<a href="/en/project/1K04108" target="_blank" >1K04108: Research and implementation of methods of efficient database propositionalization</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2006
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Machine Learning
ISSN
0885-6125
e-ISSN
—
Volume of the periodical
62
Issue of the periodical within the volume
1-2
Country of publishing house
NL - THE KINGDOM OF THE NETHERLANDS
Number of pages
31
Pages from-to
33-63
UT code for WoS article
—
EID of the result in the Scopus database
—