All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Propositionalization based relational subgroup discovery with RSD

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21230%2F06%3A03119295" target="_blank" >RIV/68407700:21230/06:03119295 - isvavai.cz</a>

  • Result on the web

  • DOI - Digital Object Identifier

Alternative languages

  • Result language

    angličtina

  • Original language name

    Propositionalization based relational subgroup discovery with RSD

  • Original language description

    Relational rule learning algorithms are typically designed to construct classification and prediction rules. However, relational rule learning can be adapted also to subgroup discovery. This paper proposes a propositionalization approach to relational subgroup discovery, achieved through appropriately adapting rule learning and first-order feature construction. The proposed approach was successfully applied to standard ILP problems (East-West trains, King-Rook-King chess endgame and mutagenicity prediction) and two real-life problems (analysis of telephone calls and traffic accident analysis).

  • Czech name

    Není k dispozici

  • Czech description

    Není k dispozici

Classification

  • Type

    J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)

  • CEP classification

    JC - Computer hardware and software

  • OECD FORD branch

Result continuities

  • Project

    <a href="/en/project/1K04108" target="_blank" >1K04108: Research and implementation of methods of efficient database propositionalization</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2006

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Machine Learning

  • ISSN

    0885-6125

  • e-ISSN

  • Volume of the periodical

    62

  • Issue of the periodical within the volume

    1-2

  • Country of publishing house

    NL - THE KINGDOM OF THE NETHERLANDS

  • Number of pages

    31

  • Pages from-to

    33-63

  • UT code for WoS article

  • EID of the result in the Scopus database