Sensor Data Fusion
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21230%2F06%3A03120563" target="_blank" >RIV/68407700:21230/06:03120563 - isvavai.cz</a>
Result on the web
—
DOI - Digital Object Identifier
—
Alternative languages
Result language
angličtina
Original language name
Sensor Data Fusion
Original language description
The main contribution of this paper is to present a sensor fusion approach to scene environment mapping as part of a Sensor Data Fusion (SDF) architecture. This approach involves combined sonar array with stereo vision readings. Sonar readings are interpreted using probability density functions to the occupied and empty regions. Scale Invariant Feature Transform (SIFT) feature descriptors are interpreted using gaussian probabilistic error models. The use of occupancy grids is proposed for representing the sensor readings. The Bayesian estimation approach is applied to update the sonar array and the SIFT descriptors’ uncertainty grids. The sensor fusion yields a significant reduction in the uncertainty of the occupancy grid compared to the individual sensor readings.
Czech name
Není k dispozici
Czech description
Není k dispozici
Classification
Type
D - Article in proceedings
CEP classification
JC - Computer hardware and software
OECD FORD branch
—
Result continuities
Project
—
Continuities
Z - Vyzkumny zamer (s odkazem do CEZ)
Others
Publication year
2006
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Article name in the collection
Proceedings of the IEEE Systems, Man and Cybernetics Society United Kingdom & Republic of Ireland Chapter 5th Conference on Advances in Cybernetic System
ISBN
1744-9170
ISSN
—
e-ISSN
—
Number of pages
6
Pages from-to
20-25
Publisher name
IEEE - Systems, Man, and Cybernetics Society
Place of publication
New York
Event location
Sheffield
Event date
Sep 7, 2006
Type of event by nationality
WRD - Celosvětová akce
UT code for WoS article
—