All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Static Load Balancing Applied to Schur Complement Method

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21230%2F07%3A03131038" target="_blank" >RIV/68407700:21230/07:03131038 - isvavai.cz</a>

  • Result on the web

  • DOI - Digital Object Identifier

Alternative languages

  • Result language

    angličtina

  • Original language name

    Static Load Balancing Applied to Schur Complement Method

  • Original language description

    We consider parallel solvers based on the Schur complement method on homogeneous parallel machines with distributed memory. A finite element mesh is partitioned by graph partitioning. Such partitioning results in submeshes with similar numbers of elements and, consequently, submatrices of similar sizes. The submatrices are partially factorised. The time spent on the partial factorisation can be different, i.e., disbalanced, because methods exploiting the sparsity of submatrices are used. This paper proposes a Quality Balancing heuristic that modifies classic mesh partitioning so that the partial factorisation times are balanced, which saves overall computation time, especially for time dependent mechanical and nonstationary transport problems.

  • Czech name

    Statické vyvažovaní zátěže pro metodu Schurových doplňků

  • Czech description

    We consider parallel solvers based on the Schur complement method on homogeneous parallel machines with distributed memory. A finite element mesh is partitioned by graph partitioning. Such partitioning results in submeshes with similar numbers of elements and, consequently, submatrices of similar sizes. The submatrices are partially factorised. The time spent on the partial factorisation can be different, i.e., disbalanced, because methods exploiting the sparsity of submatrices are used. This paper proposes a Quality Balancing heuristic that modifies classic mesh partitioning so that the partial factorisation times are balanced, which saves overall computation time, especially for time dependent mechanical and nonstationary transport problems.

Classification

  • Type

    J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)

  • CEP classification

    JC - Computer hardware and software

  • OECD FORD branch

Result continuities

  • Project

  • Continuities

    Z - Vyzkumny zamer (s odkazem do CEZ)

Others

  • Publication year

    2007

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Computers and Structures

  • ISSN

    0045-7949

  • e-ISSN

  • Volume of the periodical

    85

  • Issue of the periodical within the volume

    9

  • Country of publishing house

    GB - UNITED KINGDOM

  • Number of pages

    10

  • Pages from-to

    489-498

  • UT code for WoS article

  • EID of the result in the Scopus database