All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Identification of Nonlinearity of Electro-acoustic Systems using a Direct Path MISO Method

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21230%2F07%3A03132049" target="_blank" >RIV/68407700:21230/07:03132049 - isvavai.cz</a>

  • Result on the web

  • DOI - Digital Object Identifier

Alternative languages

  • Result language

    angličtina

  • Original language name

    Identification of Nonlinearity of Electro-acoustic Systems using a Direct Path MISO Method

  • Original language description

    The work deals with the Direct Path Multiple-Input Single-Output (MISO) method adapted for the identification of Nonlinearity of Electro-acoustic Systems. The method is based on a blind identification which uses decorrelated power series expansion, without having any knowledge of the shape of the nonlinear function. The nonlinear Direct Path model is represented by an equivalent Multiple-Input Single-Output linear model, where the inputs are nonlinear contributions of the original input signal. Each branch of a complex nonlinear model, with its nonlinear input, represents a "separable nonlinearity" or a static nonlinearity that is followed by a linear system so that the memory effect is represented by a linear filter. The input signal for identification is a record from stationary Gaussian random process. The method has been numerically tested on static nonlinear systems, such as limiter and death-zone systems. Also, an experiment on real electro-acoustic system has been performed.

  • Czech name

    Identification of Nonlinearity of Electro-acoustic Systems using a Direct Path MISO Method

  • Czech description

    The work deals with the Direct Path Multiple-Input Single-Output (MISO) method adapted for the identification of Nonlinearity of Electro-acoustic Systems. The method is based on a blind identification which uses decorrelated power series expansion, without having any knowledge of the shape of the nonlinear function. The nonlinear Direct Path model is represented by an equivalent Multiple-Input Single-Output linear model, where the inputs are nonlinear contributions of the original input signal. Each branch of a complex nonlinear model, with its nonlinear input, represents a "separable nonlinearity" or a static nonlinearity that is followed by a linear system so that the memory effect is represented by a linear filter. The input signal for identification is a record from stationary Gaussian random process. The method has been numerically tested on static nonlinear systems, such as limiter and death-zone systems. Also, an experiment on real electro-acoustic system has been performed.

Classification

  • Type

    D - Article in proceedings

  • CEP classification

    JA - Electronics and optoelectronics

  • OECD FORD branch

Result continuities

  • Project

    <a href="/en/project/GA102%2F05%2F2054" target="_blank" >GA102/05/2054: Qualitative aspects of audiovisual information processing in multimedia systems</a><br>

  • Continuities

    Z - Vyzkumny zamer (s odkazem do CEZ)

Others

  • Publication year

    2007

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Article name in the collection

    19th International Congress on Acoustics

  • ISBN

    84-87985-12-2

  • ISSN

  • e-ISSN

  • Number of pages

    6

  • Pages from-to

  • Publisher name

    Sociedad Espaňola de Acústica

  • Place of publication

    Madrid

  • Event location

    Madrid

  • Event date

    Sep 2, 2007

  • Type of event by nationality

    WRD - Celosvětová akce

  • UT code for WoS article