Efficient Mining Under Rich Constraints Derived from Various Datasets
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21230%2F07%3A03133981" target="_blank" >RIV/68407700:21230/07:03133981 - isvavai.cz</a>
Result on the web
—
DOI - Digital Object Identifier
—
Alternative languages
Result language
angličtina
Original language name
Efficient Mining Under Rich Constraints Derived from Various Datasets
Original language description
Mining patterns under many kinds of constraints is a key point to successfully get new knowledge. In this paper, we propose an efficient new algorithm Music-dfs which soundly and completely mines patterns with various constraints from large data and takes into account external data represented by several heterogeneous datasets. Constraints are freely built of a large set of primitives and enable to link the information scattered in various knowledge sources. Efficiency is achieved thanks to a new closure operator providing an interval pruning strategy applied during the depth-first search of a pattern space. A genomic case study shows both the effectiveness of our approach and the added-value of background knowledge such as free texts or gene ontologies in discovery of meaningful patterns.
Czech name
Efektivní využití různorodých omezení při dolování vzorů z dat
Czech description
Článek pojednává o algoritmu Music-dfs, který je efektivním, korektním a úplným algoritmem pro dolování vzorů. Zajímavé vzory jsou specifikovány na základě omezení, která jsou odvozena z databází různých typů.
Classification
Type
C - Chapter in a specialist book
CEP classification
JC - Computer hardware and software
OECD FORD branch
—
Result continuities
Project
<a href="/en/project/1ET101210513" target="_blank" >1ET101210513: Relational machine learning for analysis of biomedical data</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2007
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Book/collection name
Knowledge Discovery in Inductive Databases
ISBN
978-3-540-75548-7
Number of pages of the result
17
Pages from-to
223-239
Number of pages of the book
—
Publisher name
Springer
Place of publication
Heidelberg
UT code for WoS chapter
—