All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Efficient Mining Under Rich Constraints Derived from Various Datasets

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21230%2F07%3A03133981" target="_blank" >RIV/68407700:21230/07:03133981 - isvavai.cz</a>

  • Result on the web

  • DOI - Digital Object Identifier

Alternative languages

  • Result language

    angličtina

  • Original language name

    Efficient Mining Under Rich Constraints Derived from Various Datasets

  • Original language description

    Mining patterns under many kinds of constraints is a key point to successfully get new knowledge. In this paper, we propose an efficient new algorithm Music-dfs which soundly and completely mines patterns with various constraints from large data and takes into account external data represented by several heterogeneous datasets. Constraints are freely built of a large set of primitives and enable to link the information scattered in various knowledge sources. Efficiency is achieved thanks to a new closure operator providing an interval pruning strategy applied during the depth-first search of a pattern space. A genomic case study shows both the effectiveness of our approach and the added-value of background knowledge such as free texts or gene ontologies in discovery of meaningful patterns.

  • Czech name

    Efektivní využití různorodých omezení při dolování vzorů z dat

  • Czech description

    Článek pojednává o algoritmu Music-dfs, který je efektivním, korektním a úplným algoritmem pro dolování vzorů. Zajímavé vzory jsou specifikovány na základě omezení, která jsou odvozena z databází různých typů.

Classification

  • Type

    C - Chapter in a specialist book

  • CEP classification

    JC - Computer hardware and software

  • OECD FORD branch

Result continuities

  • Project

    <a href="/en/project/1ET101210513" target="_blank" >1ET101210513: Relational machine learning for analysis of biomedical data</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2007

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Book/collection name

    Knowledge Discovery in Inductive Databases

  • ISBN

    978-3-540-75548-7

  • Number of pages of the result

    17

  • Pages from-to

    223-239

  • Number of pages of the book

  • Publisher name

    Springer

  • Place of publication

    Heidelberg

  • UT code for WoS chapter