All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Parallel Image Reconstruction Using B-Spline Approximation (PROBER)

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21230%2F07%3A03134422" target="_blank" >RIV/68407700:21230/07:03134422 - isvavai.cz</a>

  • Result on the web

  • DOI - Digital Object Identifier

Alternative languages

  • Result language

    angličtina

  • Original language name

    Parallel Image Reconstruction Using B-Spline Approximation (PROBER)

  • Original language description

    Parallel MRI (pMRI) is a way to increase the speed of the MRI acquisition by com bining data obtained simultaneously from several receiver coils with distinct sp atial sensitivities. We propose an algorithm th at uses B-spline functions to approximate the reconstruction map which reduces t he number of parameters to estimate and makes the reconstruction faster and less sensitive to noise. The proposed method is tested on both phantom and in vivo images. The results ar e compared with commercial implementation of GRAPPA and SENSE algorithms in term s of time complexity and quality of the reconstruction.

  • Czech name

    Parallel Image Reconstruction Using B-Spline Approximation (PROBER)

  • Czech description

    Parallel MRI (pMRI) is a way to increase the speed of the MRI acquisition by com bining data obtained simultaneously from several receiver coils with distinct sp atial sensitivities. We propose an algorithm th at uses B-spline functions to approximate the reconstruction map which reduces t he number of parameters to estimate and makes the reconstruction faster and less sensitive to noise. The proposed method is tested on both phantom and in vivo images. The results ar e compared with commercial implementation of GRAPPA and SENSE algorithms in term s of time complexity and quality of the reconstruction.

Classification

  • Type

    J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)

  • CEP classification

    JD - Use of computers, robotics and its application

  • OECD FORD branch

Result continuities

  • Project

    <a href="/en/project/1ET101050403" target="_blank" >1ET101050403: Artificial inteligence methods in diagnostics from medical images</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2007

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Magnetic Resonance in Medicine

  • ISSN

    0740-3194

  • e-ISSN

  • Volume of the periodical

    58

  • Issue of the periodical within the volume

    9

  • Country of publishing house

    US - UNITED STATES

  • Number of pages

    10

  • Pages from-to

    582-591

  • UT code for WoS article

  • EID of the result in the Scopus database