What Is Decreased by the Max-sum Arc Consistency Algorithm?
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21230%2F07%3A03134582" target="_blank" >RIV/68407700:21230/07:03134582 - isvavai.cz</a>
Result on the web
—
DOI - Digital Object Identifier
—
Alternative languages
Result language
angličtina
Original language name
What Is Decreased by the Max-sum Arc Consistency Algorithm?
Original language description
Inference tasks in Markov random fields (MRFs) are closely related to the constraint satisfaction problem (CSP) and its soft generalizations. In particular, MAP inference in MRF is equivalent to the weighted (max-sum) CSP. A well-known tool to tackle CSPs are arc consistency algorithms, a.k.a. relaxation labeling. A promising approach to MAP inference in MRFs is linear programming relaxation solved by sequential tree-reweighted message passing (TRW-S). There is a not widely known algorithm equivalent toTRW-S, max-sum diffusion, which is slower but very simple. We give two theoretical results. First, we show that arc consistency algorithms and max-sum diffusion become the same thing if formulated in an abstract-algebraic way. Thus, we argue that max-sum arc consistency algorithm or max-sum relaxation labeling is a more suitable name for max-sum diffusion. Second, we give a criterion that strictly decreases during these algorithms.
Czech name
What Is Decreased by the Max-sum Arc Consistency Algorithm?
Czech description
Inference tasks in Markov random fields (MRFs) are closely related to the constraint satisfaction problem (CSP) and its soft generalizations. In particular, MAP inference in MRF is equivalent to the weighted (max-sum) CSP. A well-known tool to tackle CSPs are arc consistency algorithms, a.k.a. relaxation labeling. A promising approach to MAP inference in MRFs is linear programming relaxation solved by sequential tree-reweighted message passing (TRW-S). There is a not widely known algorithm equivalent toTRW-S, max-sum diffusion, which is slower but very simple. We give two theoretical results. First, we show that arc consistency algorithms and max-sum diffusion become the same thing if formulated in an abstract-algebraic way. Thus, we argue that max-sum arc consistency algorithm or max-sum relaxation labeling is a more suitable name for max-sum diffusion. Second, we give a criterion that strictly decreases during these algorithms.
Classification
Type
D - Article in proceedings
CEP classification
JD - Use of computers, robotics and its application
OECD FORD branch
—
Result continuities
Project
—
Continuities
Z - Vyzkumny zamer (s odkazem do CEZ)
Others
Publication year
2007
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Article name in the collection
ICML 2007: Proceedings of the 24th international conference on Machine learning
ISBN
978-1-59593-793-3
ISSN
1053-587X
e-ISSN
—
Number of pages
8
Pages from-to
—
Publisher name
ACM
Place of publication
New York
Event location
Corvallis
Event date
Jun 20, 2007
Type of event by nationality
WRD - Celosvětová akce
UT code for WoS article
—