All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Efficient Sampling of Disparity Space for Fast and Accurate Matching

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21230%2F07%3A03135193" target="_blank" >RIV/68407700:21230/07:03135193 - isvavai.cz</a>

  • Result on the web

  • DOI - Digital Object Identifier

Alternative languages

  • Result language

    angličtina

  • Original language name

    Efficient Sampling of Disparity Space for Fast and Accurate Matching

  • Original language description

    A simple stereo matching algorithm is proposed that visits only a small fraction of disparity space in order to find a semi-dense disparity map. It works by growing from a small set of correspondence seeds. Unlike in known seedgrowing algorithms, it guarantees matching accuracy and correctness, even in the presence of repetitive patterns. This success is based on the fact it solves a global optimization task. The algorithm can recover from wrong initial seeds to the extent they can even be random. The quality of correspondence seeds influences computing time, not the quality of the final disparity map. We show that the proposed algorithm achieves similar results as an exhaustive disparity space search but it is two orders of magnitude faster. This is very unlike the existing growing algorithms which are fast but erroneous.

  • Czech name

    Efficient Sampling of Disparity Space for Fast and Accurate Matching

  • Czech description

    A simple stereo matching algorithm is proposed that visits only a small fraction of disparity space in order to find a semi-dense disparity map. It works by growing from a small set of correspondence seeds. Unlike in known seedgrowing algorithms, it guarantees matching accuracy and correctness, even in the presence of repetitive patterns. This success is based on the fact it solves a global optimization task. The algorithm can recover from wrong initial seeds to the extent they can even be random. The quality of correspondence seeds influences computing time, not the quality of the final disparity map. We show that the proposed algorithm achieves similar results as an exhaustive disparity space search but it is two orders of magnitude faster. This is very unlike the existing growing algorithms which are fast but erroneous.

Classification

  • Type

    D - Article in proceedings

  • CEP classification

    JD - Use of computers, robotics and its application

  • OECD FORD branch

Result continuities

  • Project

    <a href="/en/project/1ET101210406" target="_blank" >1ET101210406: Automatic 3D Virtual Model Builder from Photographs</a><br>

  • Continuities

    R - Projekt Ramcoveho programu EK

Others

  • Publication year

    2007

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Article name in the collection

    CVPR 2007: Proceedings of the Computer Vision and Pattern Recognition conference

  • ISBN

    1-4244-1180-7

  • ISSN

    1053-587X

  • e-ISSN

  • Number of pages

    8

  • Pages from-to

  • Publisher name

    IEEE Computer Society

  • Place of publication

    Los Alamitos

  • Event location

    Minneapolis

  • Event date

    Jun 18, 2007

  • Type of event by nationality

    WRD - Celosvětová akce

  • UT code for WoS article