Improving SIFT for Fast Tree Matching by Optimal Linear Projection
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21230%2F07%3A03135492" target="_blank" >RIV/68407700:21230/07:03135492 - isvavai.cz</a>
Result on the web
—
DOI - Digital Object Identifier
—
Alternative languages
Result language
angličtina
Original language name
Improving SIFT for Fast Tree Matching by Optimal Linear Projection
Original language description
We propose to transform an image descriptor so that nearest neighbor (NN) search for correspondences becomes the optimal matching strategy under the assumption that inter-image deviations of corresponding descriptors have Gaussian distribution. The Euclidean NN in the transformed domain corresponds to the NN according to a truncated Mahalanobis metric in the original descriptor space. We provide theoretical justification for the proposed approach and show experimentally that the transformation allows asignificant dimensionality reduction and improves matching performance of a state-of-the art SIFT descriptor. We observe consistent improvement in precision-recall and speed of fast matching in tree structures at the expense of little overhead for projecting the descriptors into transformed space. In the context of SIFT vs. transformed MSIFT comparison, tree search structures are evaluated according to different criteria and query types. All search tree experiments confirm that transform
Czech name
Improving SIFT for Fast Tree Matching by Optimal Linear Projection
Czech description
We propose to transform an image descriptor so that nearest neighbor (NN) search for correspondences becomes the optimal matching strategy under the assumption that inter-image deviations of corresponding descriptors have Gaussian distribution. The Euclidean NN in the transformed domain corresponds to the NN according to a truncated Mahalanobis metric in the original descriptor space. We provide theoretical justification for the proposed approach and show experimentally that the transformation allows asignificant dimensionality reduction and improves matching performance of a state-of-the art SIFT descriptor. We observe consistent improvement in precision-recall and speed of fast matching in tree structures at the expense of little overhead for projecting the descriptors into transformed space. In the context of SIFT vs. transformed MSIFT comparison, tree search structures are evaluated according to different criteria and query types. All search tree experiments confirm that transform
Classification
Type
D - Article in proceedings
CEP classification
JD - Use of computers, robotics and its application
OECD FORD branch
—
Result continuities
Project
<a href="/en/project/GA102%2F07%2F1317" target="_blank" >GA102/07/1317: Methods for Visual Recognition of Large Collections of Non-rigid Objects</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2007
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Article name in the collection
ICCV 2007: Proceedings of Eleventh IEEE International Conference on Computer Vision
ISBN
978-1-4244-1630-1
ISSN
—
e-ISSN
—
Number of pages
8
Pages from-to
—
Publisher name
Omnipress
Place of publication
Madison
Event location
Rio de Janeiro
Event date
Oct 14, 2007
Type of event by nationality
WRD - Celosvětová akce
UT code for WoS article
—