All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Behavior Histograms for Action Recognition and Human Detection

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21230%2F07%3A03139297" target="_blank" >RIV/68407700:21230/07:03139297 - isvavai.cz</a>

  • Result on the web

  • DOI - Digital Object Identifier

Alternative languages

  • Result language

    angličtina

  • Original language name

    Behavior Histograms for Action Recognition and Human Detection

  • Original language description

    This paper presents an approach for human detection and simultaneous behavior recognition from images and image sequences. An action representation is derived by applying a clustering algorithm to sequences of Histogram of Oriented Gradient (HOG) descriptors of human motion images. For novel image sequences, we first detect the human by matching extracted descriptors with the prototypical action primitives. Given a sequence of assigned action primitives, we can build a histogram from observed motion. Thus, behavior can be classified by means of histogram comparison, interpreting behavior recognition as a problem of statistical sequence analysis. Results on publicly available benchmark-data show a high accuracy for action recognition.

  • Czech name

    Behavior Histograms for Action Recognition and Human Detection

  • Czech description

    This paper presents an approach for human detection and simultaneous behavior recognition from images and image sequences. An action representation is derived by applying a clustering algorithm to sequences of Histogram of Oriented Gradient (HOG) descriptors of human motion images. For novel image sequences, we first detect the human by matching extracted descriptors with the prototypical action primitives. Given a sequence of assigned action primitives, we can build a histogram from observed motion. Thus, behavior can be classified by means of histogram comparison, interpreting behavior recognition as a problem of statistical sequence analysis. Results on publicly available benchmark-data show a high accuracy for action recognition.

Classification

  • Type

    D - Article in proceedings

  • CEP classification

    JD - Use of computers, robotics and its application

  • OECD FORD branch

Result continuities

  • Project

  • Continuities

    V - Vyzkumna aktivita podporovana z jinych verejnych zdroju

Others

  • Publication year

    2007

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Article name in the collection

    Human Motion - Understanding, Modeling, Capture and Animation

  • ISBN

    978-3-540-75702-3

  • ISSN

  • e-ISSN

  • Number of pages

    14

  • Pages from-to

  • Publisher name

    Springer

  • Place of publication

    Heidelberg

  • Event location

    Rio de Janeiro

  • Event date

    Oct 20, 2007

  • Type of event by nationality

    WRD - Celosvětová akce

  • UT code for WoS article