Reducing false positive responses in lung nodule detector system by asymmetric AdaBoost
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21230%2F08%3A03144356" target="_blank" >RIV/68407700:21230/08:03144356 - isvavai.cz</a>
Result on the web
—
DOI - Digital Object Identifier
—
Alternative languages
Result language
angličtina
Original language name
Reducing false positive responses in lung nodule detector system by asymmetric AdaBoost
Original language description
We are developing a complex computer aided diagnosis (CAD) system to detect small pulmonary nodules from helical CT scans. Here we present a classifier to reduce the number of false positive responses of the primary detector. Our approach is based on anasymmetric Adaboost which enables us to give different weights to missed nodules (false negatives, FNs) and incorrectly detected structures (false positives, FPs). This is useful because there are noticeably more negative examples in the nodule candidateset than real nodules-true positives (TPs). The whole system is meant as a second opinion for a human radiologist to speed up reading the examination. That is why we should detect as many true nodules as possible, while a certain number of FPs is acceptable. The system was tested on 147 cases (36559 slices) containing 357 nodules marked by an expert radiologist. The new classifier significantly reduced the number of false positives, while only a few nodules were incorrectly omitted.
Czech name
Reducing false positive responses in lung nodule detector system by asymmetric AdaBoost
Czech description
We are developing a complex computer aided diagnosis (CAD) system to detect small pulmonary nodules from helical CT scans. Here we present a classifier to reduce the number of false positive responses of the primary detector. Our approach is based on anasymmetric Adaboost which enables us to give different weights to missed nodules (false negatives, FNs) and incorrectly detected structures (false positives, FPs). This is useful because there are noticeably more negative examples in the nodule candidateset than real nodules-true positives (TPs). The whole system is meant as a second opinion for a human radiologist to speed up reading the examination. That is why we should detect as many true nodules as possible, while a certain number of FPs is acceptable. The system was tested on 147 cases (36559 slices) containing 357 nodules marked by an expert radiologist. The new classifier significantly reduced the number of false positives, while only a few nodules were incorrectly omitted.
Classification
Type
D - Article in proceedings
CEP classification
JD - Use of computers, robotics and its application
OECD FORD branch
—
Result continuities
Project
Result was created during the realization of more than one project. More information in the Projects tab.
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2008
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Article name in the collection
Proceedings of 2008 IEEE International Symposium on Biomedical Imaging: From Nano to Macro
ISBN
978-1-4244-2002-5
ISSN
1945-7928
e-ISSN
—
Number of pages
4
Pages from-to
—
Publisher name
IEEE
Place of publication
New York
Event location
Paris
Event date
May 14, 2008
Type of event by nationality
WRD - Celosvětová akce
UT code for WoS article
000258259800165