Behaviour of FeRaNGA method for Feature Ranking during learning process using Inductive Modelling
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21230%2F08%3A03145893" target="_blank" >RIV/68407700:21230/08:03145893 - isvavai.cz</a>
Result on the web
—
DOI - Digital Object Identifier
—
Alternative languages
Result language
angličtina
Original language name
Behaviour of FeRaNGA method for Feature Ranking during learning process using Inductive Modelling
Original language description
Nowadays a Feature Ranking (FR) is commonly used method for obtaining information about a large data sets with various dimensionality. This knowledge can be used in a next step of data processing. Accuracy and a speed of experiments can be improved by this. Our approach is based on Artificial Neural Networks (ANN) instead of classical statistical methods. We obtain the knowledge as a by-product of Niching Genetic Algorithm (NGA) used for creation of a feedforward hybrid neural network called GAME. In this paper we present a behaviour of FeRaNGA (Feature Ranking method using Niching Genetic Algorithm(NGA)) during a learning process, especially in every layer of generated GAME network. We want to answer how important is NGA configuration and processing procedure for FR results because behaviour of GA is nondeterministic and thereby were results of FeRaNGA also indefinitive. This method ranks features depending on a percentage of processing elements that survived a selection process.
Czech name
Behaviour of FeRaNGA method for Feature Ranking during learning process using Inductive Modelling
Czech description
Nowadays a Feature Ranking (FR) is commonly used method for obtaining information about a large data sets with various dimensionality. This knowledge can be used in a next step of data processing. Accuracy and a speed of experiments can be improved by this. Our approach is based on Artificial Neural Networks (ANN) instead of classical statistical methods. We obtain the knowledge as a by-product of Niching Genetic Algorithm (NGA) used for creation of a feedforward hybrid neural network called GAME. In this paper we present a behaviour of FeRaNGA (Feature Ranking method using Niching Genetic Algorithm(NGA)) during a learning process, especially in every layer of generated GAME network. We want to answer how important is NGA configuration and processing procedure for FR results because behaviour of GA is nondeterministic and thereby were results of FeRaNGA also indefinitive. This method ranks features depending on a percentage of processing elements that survived a selection process.
Classification
Type
D - Article in proceedings
CEP classification
IN - Informatics
OECD FORD branch
—
Result continuities
Project
<a href="/en/project/KJB201210701" target="_blank" >KJB201210701: Automated Knowledge Extraction</a><br>
Continuities
Z - Vyzkumny zamer (s odkazem do CEZ)
Others
Publication year
2008
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Article name in the collection
Proceedings of the 2nd International Conference on Inductive Modelling
ISBN
978-966-02-4889-2
ISSN
—
e-ISSN
—
Number of pages
5
Pages from-to
—
Publisher name
Ukr. INTEI
Place of publication
Kiev
Event location
Kyjev
Event date
Sep 15, 2008
Type of event by nationality
WRD - Celosvětová akce
UT code for WoS article
—