Social Impact based Approach to Feature Subset Selection
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21230%2F08%3A03146412" target="_blank" >RIV/68407700:21230/08:03146412 - isvavai.cz</a>
Result on the web
—
DOI - Digital Object Identifier
—
Alternative languages
Result language
angličtina
Original language name
Social Impact based Approach to Feature Subset Selection
Original language description
The interactions taking place in the society could be a source of rich inspiration for the development of novel computational methods. This paper describes an application of two optimization methods based on the idea of social interactions. The first oneis the Social Impact Theory based Optimizer - a novel method directly inspired by and based on the Dynamic Theory of Social Impact known from social psychology. The second one is the binary Particle Swarm Optimization - well known optimization technique, which could be understood as to be inspired by decision making process in a group. The two binary optimization methods are applied in the area of automatic pattern classification to selection of an optimal subset of classifier's inputs. The testing isperformed using four datasets from UCI repository. The results show the ability of both methods to significantly reduce input dimensionality and simultaneously keep up the generalization ability.
Czech name
Selekce přízkové podmnožiny založená na sociálním dopadu
Czech description
Interakce odehrávající se uvnitř společnosti jedinců mohou být zdrojem inspirace při vývoji nových výpočetních metod. Tento článek popisuje aplikaci dvou optimalizačních metod založených na myšlence sociálních interakcí. První je Social Impact Theory based Optimiser a druhá metoda je binární Particle Swarm Optimiser. Metody jsou aplikovány na selekci optimální podmnožiny vstupů klasifikátoru, dále jsou pak porovnány.
Classification
Type
D - Article in proceedings
CEP classification
JD - Use of computers, robotics and its application
OECD FORD branch
—
Result continuities
Project
—
Continuities
Z - Vyzkumny zamer (s odkazem do CEZ)
Others
Publication year
2008
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Article name in the collection
Nature Inspired Cooperative Strategies for Optimization (NICSO 2007)
ISBN
978-3-540-78986-4
ISSN
1860-949X
e-ISSN
—
Number of pages
10
Pages from-to
—
Publisher name
Springer
Place of publication
Heidelberg
Event location
Acireale
Event date
Nov 8, 2007
Type of event by nationality
WRD - Celosvětová akce
UT code for WoS article
000262048100022