Efficient Sequential Correspondence Selection by Cosegmentation
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21230%2F08%3A03150796" target="_blank" >RIV/68407700:21230/08:03150796 - isvavai.cz</a>
Result on the web
—
DOI - Digital Object Identifier
—
Alternative languages
Result language
angličtina
Original language name
Efficient Sequential Correspondence Selection by Cosegmentation
Original language description
In many retrieval, object recognition and wide baseline stereo methods, correspondences of interest points (distinguished regions, transformation covariant points) are established possibly sublinearly by matching a compact descriptor such as SIFT. We show that a subsequent cosegmentation process coupled with a quasi-optimal sequential decision process leads to a correspondence verification procedure that has (i) high precision (is highly discriminative) (ii) good recall and (iii) is fast. The sequentialdecision on the correctness of a correspondence is based on trivial attributes of a modified dense stereo matching algorithm. The attributes are projected on a prominent discriminative direction by SVM. Wald's sequential probability ratio test is performed for SVM projection computed on progressively larger co-segmented regions. Experimentally we show that the process significantly outperforms the standard correspondence selection process based on SIFT distance ratios on challenging mat
Czech name
Efficient Sequential Correspondence Selection by Cosegmentation
Czech description
In many retrieval, object recognition and wide baseline stereo methods, correspondences of interest points (distinguished regions, transformation covariant points) are established possibly sublinearly by matching a compact descriptor such as SIFT. We show that a subsequent cosegmentation process coupled with a quasi-optimal sequential decision process leads to a correspondence verification procedure that has (i) high precision (is highly discriminative) (ii) good recall and (iii) is fast. The sequentialdecision on the correctness of a correspondence is based on trivial attributes of a modified dense stereo matching algorithm. The attributes are projected on a prominent discriminative direction by SVM. Wald's sequential probability ratio test is performed for SVM projection computed on progressively larger co-segmented regions. Experimentally we show that the process significantly outperforms the standard correspondence selection process based on SIFT distance ratios on challenging mat
Classification
Type
D - Article in proceedings
CEP classification
JD - Use of computers, robotics and its application
OECD FORD branch
—
Result continuities
Project
Result was created during the realization of more than one project. More information in the Projects tab.
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>S - Specificky vyzkum na vysokych skolach
Others
Publication year
2008
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Article name in the collection
CVPR 2008: Proceedings of the 2008 IEEE Computer Society Conference on Computer Vision and Pattern Recognition
ISBN
978-1-4244-2242-5
ISSN
1063-6919
e-ISSN
—
Number of pages
8
Pages from-to
—
Publisher name
Omnipress
Place of publication
Medison
Event location
Anchorage, Alaska
Event date
Jun 24, 2008
Type of event by nationality
WRD - Celosvětová akce
UT code for WoS article
000259736800134