Automatic Generator of Minimal Problem Solvers
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21230%2F08%3A03150846" target="_blank" >RIV/68407700:21230/08:03150846 - isvavai.cz</a>
Result on the web
—
DOI - Digital Object Identifier
—
Alternative languages
Result language
angličtina
Original language name
Automatic Generator of Minimal Problem Solvers
Original language description
Finding solutions to minimal problems for estimating epipolar geometry and camera motion leads to solving systems of algebraic equations. Often, these systems are not trivial and therefore special algorithms have to be designed to achieve numerical robustness and computational efficiency. The state of the art approach for constructing such algorithms is the Gröbner basis method for solving systems of polynomial equations. Previously, the Gröbner basis solvers were designed ad hoc for concrete problems and they could not be easily applied to new problems. In this paper we propose an automatic procedure for generating Gröbner basis solvers which could be used even by non-experts to solve technical problems. The input to our solver generator is a system of polynomial equations with a finite number of solutions. The output of our solver generator is the Matlab or C code which computes solutions to this system for concrete coefficients. Generating solvers automatically opens possibilities t
Czech name
Automatic Generator of Minimal Problem Solvers
Czech description
Finding solutions to minimal problems for estimating epipolar geometry and camera motion leads to solving systems of algebraic equations. Often, these systems are not trivial and therefore special algorithms have to be designed to achieve numerical robustness and computational efficiency. The state of the art approach for constructing such algorithms is the Gröbner basis method for solving systems of polynomial equations. Previously, the Gröbner basis solvers were designed ad hoc for concrete problems and they could not be easily applied to new problems. In this paper we propose an automatic procedure for generating Gröbner basis solvers which could be used even by non-experts to solve technical problems. The input to our solver generator is a system of polynomial equations with a finite number of solutions. The output of our solver generator is the Matlab or C code which computes solutions to this system for concrete coefficients. Generating solvers automatically opens possibilities t
Classification
Type
D - Article in proceedings
CEP classification
JD - Use of computers, robotics and its application
OECD FORD branch
—
Result continuities
Project
—
Continuities
Z - Vyzkumny zamer (s odkazem do CEZ)
Others
Publication year
2008
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Article name in the collection
Computer Vision - ECCV 2008, 10th European Conference on Computer Vision, Proceedings, Part III
ISBN
978-3-540-88689-1
ISSN
0302-9743
e-ISSN
—
Number of pages
14
Pages from-to
—
Publisher name
Springer
Place of publication
Berlin
Event location
Marseille
Event date
Oct 12, 2008
Type of event by nationality
WRD - Celosvětová akce
UT code for WoS article
000260659800023