All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Automatic Generator of Minimal Problem Solvers

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21230%2F08%3A03150846" target="_blank" >RIV/68407700:21230/08:03150846 - isvavai.cz</a>

  • Result on the web

  • DOI - Digital Object Identifier

Alternative languages

  • Result language

    angličtina

  • Original language name

    Automatic Generator of Minimal Problem Solvers

  • Original language description

    Finding solutions to minimal problems for estimating epipolar geometry and camera motion leads to solving systems of algebraic equations. Often, these systems are not trivial and therefore special algorithms have to be designed to achieve numerical robustness and computational efficiency. The state of the art approach for constructing such algorithms is the Gröbner basis method for solving systems of polynomial equations. Previously, the Gröbner basis solvers were designed ad hoc for concrete problems and they could not be easily applied to new problems. In this paper we propose an automatic procedure for generating Gröbner basis solvers which could be used even by non-experts to solve technical problems. The input to our solver generator is a system of polynomial equations with a finite number of solutions. The output of our solver generator is the Matlab or C code which computes solutions to this system for concrete coefficients. Generating solvers automatically opens possibilities t

  • Czech name

    Automatic Generator of Minimal Problem Solvers

  • Czech description

    Finding solutions to minimal problems for estimating epipolar geometry and camera motion leads to solving systems of algebraic equations. Often, these systems are not trivial and therefore special algorithms have to be designed to achieve numerical robustness and computational efficiency. The state of the art approach for constructing such algorithms is the Gröbner basis method for solving systems of polynomial equations. Previously, the Gröbner basis solvers were designed ad hoc for concrete problems and they could not be easily applied to new problems. In this paper we propose an automatic procedure for generating Gröbner basis solvers which could be used even by non-experts to solve technical problems. The input to our solver generator is a system of polynomial equations with a finite number of solutions. The output of our solver generator is the Matlab or C code which computes solutions to this system for concrete coefficients. Generating solvers automatically opens possibilities t

Classification

  • Type

    D - Article in proceedings

  • CEP classification

    JD - Use of computers, robotics and its application

  • OECD FORD branch

Result continuities

  • Project

  • Continuities

    Z - Vyzkumny zamer (s odkazem do CEZ)

Others

  • Publication year

    2008

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Article name in the collection

    Computer Vision - ECCV 2008, 10th European Conference on Computer Vision, Proceedings, Part III

  • ISBN

    978-3-540-88689-1

  • ISSN

    0302-9743

  • e-ISSN

  • Number of pages

    14

  • Pages from-to

  • Publisher name

    Springer

  • Place of publication

    Berlin

  • Event location

    Marseille

  • Event date

    Oct 12, 2008

  • Type of event by nationality

    WRD - Celosvětová akce

  • UT code for WoS article

    000260659800023