Learning Fast Emulators of Binary Decision Processes
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21230%2F09%3A00157776" target="_blank" >RIV/68407700:21230/09:00157776 - isvavai.cz</a>
Result on the web
—
DOI - Digital Object Identifier
—
Alternative languages
Result language
angličtina
Original language name
Learning Fast Emulators of Binary Decision Processes
Original language description
We shows how existing binary decision algorithms can be approximated by a fast trained WaldBoost classifier. WaldBoost learning minimises the decision time of the classifier while guaranteeing predefined precision. The WaldBoost algorithm together with bootstrapping is able to efficiently handle an effectively unlimited number of training examples provided by the implementation of the approximated algorithm. Two interest point detectors, the Hessian-Laplace and the Kadir-Brady saliency detectors, are emulated to demonstrate the approach. Experiments show that while the repeatability and matching scores are similar for the original and emulated algorithms, a 9-fold speed-up for the Hessian-Laplace detector and a 142-fold speed-up for the Kadir-Brady detector is achieved.
Czech name
—
Czech description
—
Classification
Type
J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)
CEP classification
JD - Use of computers, robotics and its application
OECD FORD branch
—
Result continuities
Project
<a href="/en/project/GA102%2F07%2F1317" target="_blank" >GA102/07/1317: Methods for Visual Recognition of Large Collections of Non-rigid Objects</a><br>
Continuities
R - Projekt Ramcoveho programu EK
Others
Publication year
2009
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
International Journal of Computer Vision
ISSN
0920-5691
e-ISSN
—
Volume of the periodical
83
Issue of the periodical within the volume
2
Country of publishing house
NL - THE KINGDOM OF THE NETHERLANDS
Number of pages
15
Pages from-to
—
UT code for WoS article
000264520400003
EID of the result in the Scopus database
—