Optimized Cutting Plane Algorithm for Large-Scale Risk Minimization
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21230%2F09%3A00158805" target="_blank" >RIV/68407700:21230/09:00158805 - isvavai.cz</a>
Result on the web
—
DOI - Digital Object Identifier
—
Alternative languages
Result language
angličtina
Original language name
Optimized Cutting Plane Algorithm for Large-Scale Risk Minimization
Original language description
We have developed an optimized cutting plane algorithm (OCA) for solving large-scale risk minimization problems. We prove that the number of iterations OCA requires to converge to a epsilon precise solution is approximately linear in the sample size. Wealso derive OCAS, an OCA-based linear binary SVM solver, and OCAM, a linear multi-class SVM solver. In an extensive empirical evaluation we show that OCAS outperforms current state-of-the-art SVM solvers like svmlight, svmperf and BMRM, achieving speedupfactor more than 1,200 over svmlight on some data sets and speedup factor of 29 over svmperf, while obtaining the same precise support vector solution.
Czech name
—
Czech description
—
Classification
Type
J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)
CEP classification
JD - Use of computers, robotics and its application
OECD FORD branch
—
Result continuities
Project
<a href="/en/project/1M0567" target="_blank" >1M0567: Centre for Applied Cybernetics</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2009
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Journal of Machine Learning Research
ISSN
1532-4435
e-ISSN
—
Volume of the periodical
10
Issue of the periodical within the volume
4
Country of publishing house
US - UNITED STATES
Number of pages
36
Pages from-to
—
UT code for WoS article
000272346400001
EID of the result in the Scopus database
—