All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Optimized Cutting Plane Algorithm for Large-Scale Risk Minimization

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21230%2F09%3A00158805" target="_blank" >RIV/68407700:21230/09:00158805 - isvavai.cz</a>

  • Result on the web

  • DOI - Digital Object Identifier

Alternative languages

  • Result language

    angličtina

  • Original language name

    Optimized Cutting Plane Algorithm for Large-Scale Risk Minimization

  • Original language description

    We have developed an optimized cutting plane algorithm (OCA) for solving large-scale risk minimization problems. We prove that the number of iterations OCA requires to converge to a epsilon precise solution is approximately linear in the sample size. Wealso derive OCAS, an OCA-based linear binary SVM solver, and OCAM, a linear multi-class SVM solver. In an extensive empirical evaluation we show that OCAS outperforms current state-of-the-art SVM solvers like svmlight, svmperf and BMRM, achieving speedupfactor more than 1,200 over svmlight on some data sets and speedup factor of 29 over svmperf, while obtaining the same precise support vector solution.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)

  • CEP classification

    JD - Use of computers, robotics and its application

  • OECD FORD branch

Result continuities

  • Project

    <a href="/en/project/1M0567" target="_blank" >1M0567: Centre for Applied Cybernetics</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2009

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Journal of Machine Learning Research

  • ISSN

    1532-4435

  • e-ISSN

  • Volume of the periodical

    10

  • Issue of the periodical within the volume

    4

  • Country of publishing house

    US - UNITED STATES

  • Number of pages

    36

  • Pages from-to

  • UT code for WoS article

    000272346400001

  • EID of the result in the Scopus database