All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Ideal curved elements and the discontinuous Galerkin method

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21230%2F10%3A00172349" target="_blank" >RIV/68407700:21230/10:00172349 - isvavai.cz</a>

  • Result on the web

  • DOI - Digital Object Identifier

Alternative languages

  • Result language

    angličtina

  • Original language name

    Ideal curved elements and the discontinuous Galerkin method

  • Original language description

    In this paper we prove a new result concerning Zl'amal's ideal curved elements which allows us to employ these elements in a discontinuous Galerkin finite element method for a nonlinear convection-diffusion problem on a nonpolygonal domain, and to derive an H^1-optimal error estimate for this method.

  • Czech name

  • Czech description

Classification

  • Type

    D - Article in proceedings

  • CEP classification

    BA - General mathematics

  • OECD FORD branch

Result continuities

  • Project

  • Continuities

    Z - Vyzkumny zamer (s odkazem do CEZ)

Others

  • Publication year

    2010

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Article name in the collection

    Numerical Mathematics and Advanced Applications. ENUMATH 2009

  • ISBN

    978-3-642-11794-7

  • ISSN

  • e-ISSN

  • Number of pages

    6

  • Pages from-to

  • Publisher name

    Springer

  • Place of publication

    Berlin

  • Event location

    Uppsala

  • Event date

    Jun 29, 2009

  • Type of event by nationality

    WRD - Celosvětová akce

  • UT code for WoS article