Combining Learning Techniques for Classical Planning: Macro operators and Entanglements
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21230%2F10%3A00173971" target="_blank" >RIV/68407700:21230/10:00173971 - isvavai.cz</a>
Result on the web
—
DOI - Digital Object Identifier
—
Alternative languages
Result language
angličtina
Original language name
Combining Learning Techniques for Classical Planning: Macro operators and Entanglements
Original language description
Planning techniques recorded a significant progress during recent years. However, many planning problems remain still hard even for modern planners. One of the most promising approaches is gathering additional knowledge by using learning techniques. Wellknown sort of knowledge - macro-operators, formalized like `normal` planning operators, represent a sequence of primitive planning operators. The other sort of knowledge consists of pruning unnecessary operators' instances (actions) by investigating connections (entanglements) between operators and initial or goal predicates. Advantageously, macro-operators and entanglements can be encoded directly in planning domains (or problems) and common planning systems can be applied on them. In this paper, we will show how we can put these approaches together. We will provide an experimental evaluation showing that combining these learning techniques can improve the planning process.
Czech name
—
Czech description
—
Classification
Type
D - Article in proceedings
CEP classification
JC - Computer hardware and software
OECD FORD branch
—
Result continuities
Project
<a href="/en/project/GA201%2F08%2F0509" target="_blank" >GA201/08/0509: LeCoS: merging machine LEarning and COnstraint Satisfaction</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2010
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Article name in the collection
Proceedings of The 22nd IEEE International Conference on Tools with Artificial Intelligence
ISBN
978-0-7695-4263-8
ISSN
1082-3409
e-ISSN
—
Number of pages
8
Pages from-to
—
Publisher name
IEEE Computer Society
Place of publication
Cannes
Event location
Arras
Event date
Oct 27, 2010
Type of event by nationality
WRD - Celosvětová akce
UT code for WoS article
000287040000013