Knowledge Gene: A Novel Feature Extraction Method in Genomics
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21230%2F10%3A00176119" target="_blank" >RIV/68407700:21230/10:00176119 - isvavai.cz</a>
Result on the web
—
DOI - Digital Object Identifier
—
Alternative languages
Result language
angličtina
Original language name
Knowledge Gene: A Novel Feature Extraction Method in Genomics
Original language description
Dimension reduction is the process of reducing the number of variables under consideration. In genomic classification it is widely applied because the high dimensionality of gene expression data proved to decrease accuracy and comprehensibility of genomic classifiers. Simultaneously, contemporary genomics offers an opportunity to reach beyond the routine application of purely statistical dimension reduction techniques. Availability of a great variability of knowledge on gene roles, functions and gene-gene interactions allows to benefit from knowledge-based approaches to dimension reduction. We extend our previous work, where a priori knowledge-based feature extraction method was introduced. The method called knowledge gene (KG) employs the gene keywords affinity to define a gene similarity measure.
Czech name
—
Czech description
—
Classification
Type
D - Article in proceedings
CEP classification
JC - Computer hardware and software
OECD FORD branch
—
Result continuities
Project
—
Continuities
S - Specificky vyzkum na vysokych skolach
Others
Publication year
2010
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Article name in the collection
POSTER 2010 - Proceedings of the 14th International Conference on Electrical Engineering
ISBN
978-80-01-04544-2
ISSN
—
e-ISSN
—
Number of pages
5
Pages from-to
—
Publisher name
ČVUT v Praze, FEL
Place of publication
Praha
Event location
Praha
Event date
May 6, 2010
Type of event by nationality
EUR - Evropská akce
UT code for WoS article
—