Atomic effect algebras with compression bases
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21230%2F11%3A00179189" target="_blank" >RIV/68407700:21230/11:00179189 - isvavai.cz</a>
Result on the web
<a href="http://dx.doi.org/10.1063/1.3533918" target="_blank" >http://dx.doi.org/10.1063/1.3533918</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1063/1.3533918" target="_blank" >10.1063/1.3533918</a>
Alternative languages
Result language
angličtina
Original language name
Atomic effect algebras with compression bases
Original language description
Compression base effect algebras were recently introduced by Gudder [Demonstr. Math. 39, 43 (2006)]. They generalize sequential effect algebras [Rep. Math. Phys. 49, 87 (2002)] and compressible effect algebras [Rep. Math. Phys. 54, 93 (2004)]. The present paper focuses on atomic compression base effect algebras and the consequences of atoms being foci (so-called projections) of the compressions in the compression base. Part of our work generalizes results obtained in atomic sequential effect algebras byTkadlec [Int. J. Theor. Phys. 47, 185 (2008)]. The notion of projection-atomicity is introduced and studied, and several conditions that force a compression base effect algebra or the set of its projections to be Boolean are found. Finally, we apply some of these results to sequential effect algebras and strengthen a previously established result concerning a sufficient condition for them to be Boolean. (C) 2011 American Institute of Physics. [doi: 10.1063/1.3533918]
Czech name
—
Czech description
—
Classification
Type
J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)
CEP classification
BA - General mathematics
OECD FORD branch
—
Result continuities
Project
—
Continuities
Z - Vyzkumny zamer (s odkazem do CEZ)
Others
Publication year
2011
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Journal of Mathematical Physics
ISSN
0022-2488
e-ISSN
—
Volume of the periodical
52
Issue of the periodical within the volume
1
Country of publishing house
US - UNITED STATES
Number of pages
9
Pages from-to
"nečíslov. (ArtNo=013512)"
UT code for WoS article
000286898400030
EID of the result in the Scopus database
—