On monotone modalities and adjointness
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21230%2F11%3A00179253" target="_blank" >RIV/68407700:21230/11:00179253 - isvavai.cz</a>
Alternative codes found
RIV/00216208:11210/11:10110348
Result on the web
<a href="http://dx.doi.org/10.1017/S0960129510000514" target="_blank" >http://dx.doi.org/10.1017/S0960129510000514</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1017/S0960129510000514" target="_blank" >10.1017/S0960129510000514</a>
Alternative languages
Result language
angličtina
Original language name
On monotone modalities and adjointness
Original language description
We fix a logical connection (Stone -| Pred : Set^op -> BA given by 2 as a schizophrenic object) and study coalgebraic modal logic that is induced by a functor T : Set -> Set that is finitary and standard and preserves weak pullbacks and finite sets. We prove that for any such T, the cover modality nabla is a left (and its dual delta is a right) adjoint relative to P_omega. We then consider monotone unary modalities arising from the logical connection and show that they all are left (or right) adjoints relative to P_omega.
Czech name
—
Czech description
—
Classification
Type
J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)
CEP classification
BA - General mathematics
OECD FORD branch
—
Result continuities
Project
<a href="/en/project/GPP202%2F11%2FP304" target="_blank" >GPP202/11/P304: Proof theory of modal coalgebraic logic</a><br>
Continuities
Z - Vyzkumny zamer (s odkazem do CEZ)
Others
Publication year
2011
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Mathematical Structures in Computer Science
ISSN
0960-1295
e-ISSN
—
Volume of the periodical
2011
Issue of the periodical within the volume
21
Country of publishing house
GB - UNITED KINGDOM
Number of pages
34
Pages from-to
383-416
UT code for WoS article
000289006300007
EID of the result in the Scopus database
—