All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

On monotone modalities and adjointness

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21230%2F11%3A00179253" target="_blank" >RIV/68407700:21230/11:00179253 - isvavai.cz</a>

  • Alternative codes found

    RIV/00216208:11210/11:10110348

  • Result on the web

    <a href="http://dx.doi.org/10.1017/S0960129510000514" target="_blank" >http://dx.doi.org/10.1017/S0960129510000514</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1017/S0960129510000514" target="_blank" >10.1017/S0960129510000514</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    On monotone modalities and adjointness

  • Original language description

    We fix a logical connection (Stone -| Pred : Set^op -> BA given by 2 as a schizophrenic object) and study coalgebraic modal logic that is induced by a functor T : Set -> Set that is finitary and standard and preserves weak pullbacks and finite sets. We prove that for any such T, the cover modality nabla is a left (and its dual delta is a right) adjoint relative to P_omega. We then consider monotone unary modalities arising from the logical connection and show that they all are left (or right) adjoints relative to P_omega.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)

  • CEP classification

    BA - General mathematics

  • OECD FORD branch

Result continuities

  • Project

    <a href="/en/project/GPP202%2F11%2FP304" target="_blank" >GPP202/11/P304: Proof theory of modal coalgebraic logic</a><br>

  • Continuities

    Z - Vyzkumny zamer (s odkazem do CEZ)

Others

  • Publication year

    2011

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Mathematical Structures in Computer Science

  • ISSN

    0960-1295

  • e-ISSN

  • Volume of the periodical

    2011

  • Issue of the periodical within the volume

    21

  • Country of publishing house

    GB - UNITED KINGDOM

  • Number of pages

    34

  • Pages from-to

    383-416

  • UT code for WoS article

    000289006300007

  • EID of the result in the Scopus database