Final coalgebras in accessible categories
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21230%2F11%3A00181887" target="_blank" >RIV/68407700:21230/11:00181887 - isvavai.cz</a>
Result on the web
<a href="http://dx.doi.org/10.1017/S0960129511000351" target="_blank" >http://dx.doi.org/10.1017/S0960129511000351</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1017/S0960129511000351" target="_blank" >10.1017/S0960129511000351</a>
Alternative languages
Result language
angličtina
Original language name
Final coalgebras in accessible categories
Original language description
We propose a construction of the final coalgebra for a finitary endofunctor of a finitely accessible category and study conditions under which this construction is available. Our conditions always apply when the accessible category is cocomplete, and isthus a locally finitely presentable (l.f.p.) category, and we give an explicit and uniform construction of the final coalgebra in this case. On the other hand, our results also apply to some interesting examples of final coalgebras beyond the realm of l.f.p. categories. In particular, we construct the final coalgebra for every finitary endofunctor on the category of linear orders, and analyse Freyd's coalgebraic characterisation of the closed unit as an instance of this construction. We use and extend results of Tom Leinster, developed for his study of self-similar objects in topology, relying heavily on his formalism of modules (corresponding to endofunctors) and complexes for a module.
Czech name
—
Czech description
—
Classification
Type
J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)
CEP classification
BA - General mathematics
OECD FORD branch
—
Result continuities
Project
—
Continuities
Z - Vyzkumny zamer (s odkazem do CEZ)
Others
Publication year
2011
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Mathematical Structures in Computer Science
ISSN
0960-1295
e-ISSN
—
Volume of the periodical
21
Issue of the periodical within the volume
5
Country of publishing house
GB - UNITED KINGDOM
Number of pages
42
Pages from-to
1067-1108
UT code for WoS article
000295315000004
EID of the result in the Scopus database
—