Linear Regression and Adaptive Appearance Models for Fast Simultaneous Modelling and Tracking
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21230%2F11%3A00182044" target="_blank" >RIV/68407700:21230/11:00182044 - isvavai.cz</a>
Result on the web
<a href="http://dx.doi.org/10.1007/s11263-010-0364-4" target="_blank" >http://dx.doi.org/10.1007/s11263-010-0364-4</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/s11263-010-0364-4" target="_blank" >10.1007/s11263-010-0364-4</a>
Alternative languages
Result language
angličtina
Original language name
Linear Regression and Adaptive Appearance Models for Fast Simultaneous Modelling and Tracking
Original language description
We proposes an approach to tracking by regression that uses no hard-coded models and no offline learning stage. The Linear Predictor (LP) tracker has been shown to be highly computationally efficient, resulting in fast tracking. Regression tracking techniques tend to require offline learning to learn suitable regression functions. We removes offline learning and therefore increases the applicability of the technique. The online-LP tracker can simply be seeded with an initial target location, akin to theubiquitous Lucas-Kanade algorithm that tracks by registering an image template via minimisation. The issue is the representation of the target appearance and how this representation is able to adapt to changes in target appearance over time. We proposedtwo methods, LP-SMAT and LP-MED, demonstratthe ability to adapt to large appearance variations by incrementally building an appearance model.
Czech name
—
Czech description
—
Classification
Type
J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)
CEP classification
JD - Use of computers, robotics and its application
OECD FORD branch
—
Result continuities
Project
<a href="/en/project/GA102%2F07%2F1317" target="_blank" >GA102/07/1317: Methods for Visual Recognition of Large Collections of Non-rigid Objects</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2011
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
International Journal of Computer Vision
ISSN
0920-5691
e-ISSN
—
Volume of the periodical
95
Issue of the periodical within the volume
2
Country of publishing house
NL - THE KINGDOM OF THE NETHERLANDS
Number of pages
26
Pages from-to
154-179
UT code for WoS article
000294566000004
EID of the result in the Scopus database
—