All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Linear Regression and Adaptive Appearance Models for Fast Simultaneous Modelling and Tracking

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21230%2F11%3A00182044" target="_blank" >RIV/68407700:21230/11:00182044 - isvavai.cz</a>

  • Result on the web

    <a href="http://dx.doi.org/10.1007/s11263-010-0364-4" target="_blank" >http://dx.doi.org/10.1007/s11263-010-0364-4</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1007/s11263-010-0364-4" target="_blank" >10.1007/s11263-010-0364-4</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Linear Regression and Adaptive Appearance Models for Fast Simultaneous Modelling and Tracking

  • Original language description

    We proposes an approach to tracking by regression that uses no hard-coded models and no offline learning stage. The Linear Predictor (LP) tracker has been shown to be highly computationally efficient, resulting in fast tracking. Regression tracking techniques tend to require offline learning to learn suitable regression functions. We removes offline learning and therefore increases the applicability of the technique. The online-LP tracker can simply be seeded with an initial target location, akin to theubiquitous Lucas-Kanade algorithm that tracks by registering an image template via minimisation. The issue is the representation of the target appearance and how this representation is able to adapt to changes in target appearance over time. We proposedtwo methods, LP-SMAT and LP-MED, demonstratthe ability to adapt to large appearance variations by incrementally building an appearance model.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)

  • CEP classification

    JD - Use of computers, robotics and its application

  • OECD FORD branch

Result continuities

  • Project

    <a href="/en/project/GA102%2F07%2F1317" target="_blank" >GA102/07/1317: Methods for Visual Recognition of Large Collections of Non-rigid Objects</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2011

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    International Journal of Computer Vision

  • ISSN

    0920-5691

  • e-ISSN

  • Volume of the periodical

    95

  • Issue of the periodical within the volume

    2

  • Country of publishing house

    NL - THE KINGDOM OF THE NETHERLANDS

  • Number of pages

    26

  • Pages from-to

    154-179

  • UT code for WoS article

    000294566000004

  • EID of the result in the Scopus database