Commutative bounded integral residuated orthomodular lattices are Boolean algebras
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21230%2F11%3A00185052" target="_blank" >RIV/68407700:21230/11:00185052 - isvavai.cz</a>
Result on the web
<a href="http://dx.doi.org/10.1007/s00500-010-0572-4" target="_blank" >http://dx.doi.org/10.1007/s00500-010-0572-4</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/s00500-010-0572-4" target="_blank" >10.1007/s00500-010-0572-4</a>
Alternative languages
Result language
angličtina
Original language name
Commutative bounded integral residuated orthomodular lattices are Boolean algebras
Original language description
We show that a commutative bounded integral orthomodular lattice is residuated iff it is a Boolean algebra. This result is a consequence of (Ward, Dilworth in Trans Am Math Soc 45, 336-354, 1939, Theorem 7.31); however, out proof is independent and usesother instruments.
Czech name
—
Czech description
—
Classification
Type
J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)
CEP classification
BA - General mathematics
OECD FORD branch
—
Result continuities
Project
<a href="/en/project/GA201%2F07%2F1051" target="_blank" >GA201/07/1051: Algebraic and measure-theoretic aspects of quantum structures</a><br>
Continuities
Z - Vyzkumny zamer (s odkazem do CEZ)
Others
Publication year
2011
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Soft Computing
ISSN
1432-7643
e-ISSN
—
Volume of the periodical
15
Issue of the periodical within the volume
4
Country of publishing house
DE - GERMANY
Number of pages
2
Pages from-to
635-636
UT code for WoS article
000288253400002
EID of the result in the Scopus database
—