Zero-Temperature Limit of a Convergent Algorithm to Minimize the Bethe Free Energy
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21230%2F11%3A00187154" target="_blank" >RIV/68407700:21230/11:00187154 - isvavai.cz</a>
Result on the web
—
DOI - Digital Object Identifier
—
Alternative languages
Result language
angličtina
Original language name
Zero-Temperature Limit of a Convergent Algorithm to Minimize the Bethe Free Energy
Original language description
After the discovery that fixed points of loopy belief propagation coincide with stationary points of the Bethe free energy, several reseachers proposed provably convergent algorithms to directly minimize the Bethe free energy. These algorithms were formulated only for non-zero temperature (thus finding fixed points of the sum-product algorithm) and their possible extension to zero temperature is not obvious. We present the zero-temperature limit of the double-loop algorithm by Heskes, which converges amax-product fixed point. The inner loop of this algorithm turns out to be known as max-sum diffusion. Under certain conditions, the algorithm combines the complementary advantages of the max-product algorithm and max-sum diffusion: it yields good approximation of both ground states and max-marginals.
Czech name
—
Czech description
—
Classification
Type
O - Miscellaneous
CEP classification
JD - Use of computers, robotics and its application
OECD FORD branch
—
Result continuities
Project
<a href="/en/project/GAP103%2F10%2F0783" target="_blank" >GAP103/10/0783: Structure and its impact for recognition</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2011
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů