Rotation-Invariant Image and Video Description With Local Binary Pattern Features
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21230%2F12%3A00192658" target="_blank" >RIV/68407700:21230/12:00192658 - isvavai.cz</a>
Result on the web
<a href="http://dx.doi.org/10.1109/TIP.2011.2175739" target="_blank" >http://dx.doi.org/10.1109/TIP.2011.2175739</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1109/TIP.2011.2175739" target="_blank" >10.1109/TIP.2011.2175739</a>
Alternative languages
Result language
angličtina
Original language name
Rotation-Invariant Image and Video Description With Local Binary Pattern Features
Original language description
In this paper, we propose a novel approach to compute rotation-invariant features from histograms of local noninvariant patterns. We apply this approach to both static and dynamic local binary pattern (LBP) descriptors. For static-texture description, wepresent LBP histogram Fourier (LBP-HF) features, and for dynamic-texture recognition, we present two rotation-invariant descriptors computed from the LBPs from three orthogonal planes (LBP-TOP) features in the spatiotemporal domain. LBP-HF is a novel rotation-invariant image descriptor computed from discrete Fourier transforms of LBP histograms. The approach can be also generalized to embed any uniform features into this framework, and combining the supplementary information, e.g., sign and magnitude components of the LBP, together can improve the description ability. Moreover, two variants of rotation-invariant descriptors are proposed to the LBP-TOP, which is an effective descriptor for dynamic-texture recognition, as shown by its re
Czech name
—
Czech description
—
Classification
Type
J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)
CEP classification
JD - Use of computers, robotics and its application
OECD FORD branch
—
Result continuities
Project
<a href="/en/project/GAP103%2F10%2F1585" target="_blank" >GAP103/10/1585: Advanced predictors for object detection and tracking in video</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2012
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
IEEE Transactions on Image Processing
ISSN
1057-7149
e-ISSN
—
Volume of the periodical
21
Issue of the periodical within the volume
4
Country of publishing house
US - UNITED STATES
Number of pages
13
Pages from-to
1465-1477
UT code for WoS article
000302181800004
EID of the result in the Scopus database
—