Linear Bayes Classification for Mortality Prediction
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21230%2F12%3A00194925" target="_blank" >RIV/68407700:21230/12:00194925 - isvavai.cz</a>
Result on the web
—
DOI - Digital Object Identifier
—
Alternative languages
Result language
angličtina
Original language name
Linear Bayes Classification for Mortality Prediction
Original language description
This paper describes our solution for PhysioNet challenge 2012. Its main aim is to predict mortality of ICU patients and obtain good sensitivity, positive predictivity and Hosmer-Lemeshow H statistic. Each record can be understood as consisting of 37 time series of different lengths, each corresponding to one variable measured during the patient's stay at ICU. For each person, we extracted high number of features. The original feature set was further reduced using some preprocessing and selection and used to train linear Bayes classifier.
Czech name
—
Czech description
—
Classification
Type
D - Article in proceedings
CEP classification
JC - Computer hardware and software
OECD FORD branch
—
Result continuities
Project
—
Continuities
S - Specificky vyzkum na vysokych skolach
Others
Publication year
2012
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Article name in the collection
Computing in Cardiology 2012
ISBN
978-1-4673-2074-0
ISSN
2325-8861
e-ISSN
—
Number of pages
4
Pages from-to
1-4
Publisher name
IEEE
Place of publication
New York
Event location
Krakow
Event date
Sep 9, 2012
Type of event by nationality
WRD - Celosvětová akce
UT code for WoS article
—