Distributive substructural logics as coalgebraic logics over posets
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21230%2F12%3A00199000" target="_blank" >RIV/68407700:21230/12:00199000 - isvavai.cz</a>
Alternative codes found
RIV/67985807:_____/12:00379885
Result on the web
—
DOI - Digital Object Identifier
—
Alternative languages
Result language
angličtina
Original language name
Distributive substructural logics as coalgebraic logics over posets
Original language description
We show how to understand frame semantics >> of distributive substructural logics coalgebraically, >> thus opening a possibility to study them as coalgebraic >> logics. As an application of this approach we prove >> a general version of Goldblatt-Thomason theorem >> that characterizes definability of classes of frames >> for logics extending the distributive Full Lambek logic, >> as e.g. relevance logics, many-valued logics or >> intuitionistic logic. The paper is rather conceptual >> and does not claimto contain signicant new results. >> We consider a category of frames as posets equipped >> with monotone relations, and show that they can be >> understood as coalgebras for an endofunctor of the >> category of posets. In fact, we adopt a more general>> definition of frames that allows to cover a wider class >> of distributive modal logics
Czech name
—
Czech description
—
Classification
Type
D - Article in proceedings
CEP classification
BA - General mathematics
OECD FORD branch
—
Result continuities
Project
<a href="/en/project/GAP202%2F11%2F1632" target="_blank" >GAP202/11/1632: Algebraic Methods in Proof Theory</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2012
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Article name in the collection
Advances in Modal Logic 2012
ISBN
978-1-84890-068-4
ISSN
—
e-ISSN
—
Number of pages
24
Pages from-to
119-142
Publisher name
King's College
Place of publication
London
Event location
Copenhagen
Event date
Aug 22, 2012
Type of event by nationality
WRD - Celosvětová akce
UT code for WoS article
—