Real-time scene text localization and recognition
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21230%2F12%3A00200346" target="_blank" >RIV/68407700:21230/12:00200346 - isvavai.cz</a>
Result on the web
<a href="http://dx.doi.org/10.1109/CVPR.2012.6248097" target="_blank" >http://dx.doi.org/10.1109/CVPR.2012.6248097</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1109/CVPR.2012.6248097" target="_blank" >10.1109/CVPR.2012.6248097</a>
Alternative languages
Result language
angličtina
Original language name
Real-time scene text localization and recognition
Original language description
An end-to-end real-time scene text localization and recognition method is presented. The real-time performance is achieved by posing the character detection problem as an efficient sequential selection from the set of Extremal Regions (ERs). The ER detector is robust to blur, illumination, color and texture variation and handles low-contrast text. In the first classification stage, the probability of each ER being a character is estimated using novel features calculated with O(1) complexity per region tested. Only ERs with locally maximal probability are selected for the second stage, where the classification is improved using more computationally expensive features. A highly efficient exhaustive search with feedback loops is then applied to group ERsinto words and to select the most probable character segmentation. Finally, text is recognized in an OCR stage trained using synthetic fonts. The method was evaluated on two public datasets. On the ICDAR 2011 dataset, the method achieves
Czech name
—
Czech description
—
Classification
Type
D - Article in proceedings
CEP classification
JD - Use of computers, robotics and its application
OECD FORD branch
—
Result continuities
Project
<a href="/en/project/GBP103%2F12%2FG084" target="_blank" >GBP103/12/G084: Center for Large Scale Multi-modal Data Interpretation</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2012
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Article name in the collection
CVPR 2012: Proceedings of the 2012 IEEE Computer Society Conference on Computer Vision and Pattern Recognition
ISBN
978-1-4673-1228-8
ISSN
1063-6919
e-ISSN
—
Number of pages
8
Pages from-to
3538-3545
Publisher name
IEEE Computer Society Press
Place of publication
New York
Event location
Providence, Rhode Island
Event date
Jun 16, 2012
Type of event by nationality
WRD - Celosvětová akce
UT code for WoS article
000309166203089