Correlation-based Neural Gas for Visualizing Correlations between EEG Features
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21230%2F13%3A00194840" target="_blank" >RIV/68407700:21230/13:00194840 - isvavai.cz</a>
Result on the web
<a href="http://www.springerlink.com/content/qjh381l0x0455j75/" target="_blank" >http://www.springerlink.com/content/qjh381l0x0455j75/</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/978-3-642-33018-6_45" target="_blank" >10.1007/978-3-642-33018-6_45</a>
Alternative languages
Result language
angličtina
Original language name
Correlation-based Neural Gas for Visualizing Correlations between EEG Features
Original language description
Feature selection is an important issue in an automated data analysis. Unfortunately the majority of feature selection methods does not consider inner relationships between features. Furthermore existing methods are based on a prior knowledge of a data classification. Among many methods for displaying data structure there is an interest in self organizing maps and its modifications. Neural gas network has shown surprisingly good results when capturing the inner structure of data. Therefore we propose its modification (correlation - based neural gas) and we use this network to visualize correlations between features. We discuss the posibility to use this additional information for fully automated unsupervised feature selection where no classification isavailable. The algorithm is tested on the EEG data acquired during the mental rotation task.
Czech name
—
Czech description
—
Classification
Type
D - Article in proceedings
CEP classification
JC - Computer hardware and software
OECD FORD branch
—
Result continuities
Project
—
Continuities
Z - Vyzkumny zamer (s odkazem do CEZ)<br>S - Specificky vyzkum na vysokych skolach
Others
Publication year
2013
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Article name in the collection
Advances in Intelligent Systems and Computing
ISBN
978-3-642-33017-9
ISSN
2194-5357
e-ISSN
—
Number of pages
8
Pages from-to
439-446
Publisher name
Springer
Place of publication
Heidelberg
Event location
Ostrava
Event date
Sep 5, 2012
Type of event by nationality
EUR - Evropská akce
UT code for WoS article
000312969500045