All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Two-Phase Genetic Algorithm for Social Network Graphs Clustering

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21230%2F13%3A00209377" target="_blank" >RIV/68407700:21230/13:00209377 - isvavai.cz</a>

  • Alternative codes found

    RIV/67985807:_____/13:00427034

  • Result on the web

    <a href="http://dx.doi.org/10.1109/WAINA.2013.165" target="_blank" >http://dx.doi.org/10.1109/WAINA.2013.165</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1109/WAINA.2013.165" target="_blank" >10.1109/WAINA.2013.165</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Two-Phase Genetic Algorithm for Social Network Graphs Clustering

  • Original language description

    An important and useful task of a social network analysis is partitioning of its users into clusters. The structure of a social network can be naturally modeled by a directed graph. This approach transforms clustering of the users into searching for highly connected sub graphs in such a social network model. Many different approaches and algorithms for this problem exist, one of the possibilities is to utilize genetic algorithms for solving this type of task. In this paper, we analyze several differentgenetic operators and propose evolutionary based algorithm for clustering in the domain of directed weighted graphs.

  • Czech name

  • Czech description

Classification

  • Type

    D - Article in proceedings

  • CEP classification

    IN - Informatics

  • OECD FORD branch

Result continuities

  • Project

    <a href="/en/project/GAP202%2F11%2F1368" target="_blank" >GAP202/11/1368: Learning of functional relationships from high-dimensional data</a><br>

  • Continuities

    V - Vyzkumna aktivita podporovana z jinych verejnych zdroju

Others

  • Publication year

    2013

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Article name in the collection

    27th International Conference on Advanced Information Networking and Applications Workshops

  • ISBN

    978-0-7695-4952-1

  • ISSN

  • e-ISSN

  • Number of pages

    6

  • Pages from-to

    197-202

  • Publisher name

    IEEE Computer Soc.

  • Place of publication

    Los Alamitos, CA

  • Event location

    Barcelona

  • Event date

    Mar 25, 2013

  • Type of event by nationality

    WRD - Celosvětová akce

  • UT code for WoS article

    000327181600033