Learning and Calibrating Per-Location Classifiers for Visual Place Recognition
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21230%2F13%3A00212089" target="_blank" >RIV/68407700:21230/13:00212089 - isvavai.cz</a>
Result on the web
<a href="http://www.cv-foundation.org/openaccess/content_cvpr_2013/papers/Gronat_Learning_and_Calibrating_2013_CVPR_paper.pdf" target="_blank" >http://www.cv-foundation.org/openaccess/content_cvpr_2013/papers/Gronat_Learning_and_Calibrating_2013_CVPR_paper.pdf</a>
DOI - Digital Object Identifier
—
Alternative languages
Result language
angličtina
Original language name
Learning and Calibrating Per-Location Classifiers for Visual Place Recognition
Original language description
The aim of this work is to localize a query photograph by finding other images depicting the same place in a large geotagged image database. This is a challenging task due to changes in viewpoint, imaging conditions and the large size of the image database. The contribution of this work is two-fold. First, we cast the place recognition problem as a classification task and use the available geotags to train a classifier for each location in the database in a similar manner to per-exemplar SVMs in objectrecognition. Second, as only few positive training examples are available for each location, we propose a new approach to calibrate all the per-location SVM classifiers using only the negative examples. The calibration we propose relies on a significancemeasure essentially equivalent to the p-values classically used in statistical hypothesis testing. Experiments are performed on a database of 25,000 geotagged street view images of Pittsburgh and demonstrate improved place recognition ac
Czech name
—
Czech description
—
Classification
Type
D - Article in proceedings
CEP classification
JD - Use of computers, robotics and its application
OECD FORD branch
—
Result continuities
Project
<a href="/en/project/7E13015" target="_blank" >7E13015: Planetary Robotics Data Exploitation</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>S - Specificky vyzkum na vysokych skolach
Others
Publication year
2013
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Article name in the collection
CVPR 2013: IEEE Computer Society Conference on Computer Vision and Pattern Recognition
ISBN
978-0-7695-4989-7
ISSN
1063-6919
e-ISSN
—
Number of pages
8
Pages from-to
907-914
Publisher name
IEEE Computer Society
Place of publication
Los Alamitos
Event location
Portland
Event date
Jun 23, 2013
Type of event by nationality
WRD - Celosvětová akce
UT code for WoS article
—