All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Learning and Calibrating Per-Location Classifiers for Visual Place Recognition

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21230%2F13%3A00212089" target="_blank" >RIV/68407700:21230/13:00212089 - isvavai.cz</a>

  • Result on the web

    <a href="http://www.cv-foundation.org/openaccess/content_cvpr_2013/papers/Gronat_Learning_and_Calibrating_2013_CVPR_paper.pdf" target="_blank" >http://www.cv-foundation.org/openaccess/content_cvpr_2013/papers/Gronat_Learning_and_Calibrating_2013_CVPR_paper.pdf</a>

  • DOI - Digital Object Identifier

Alternative languages

  • Result language

    angličtina

  • Original language name

    Learning and Calibrating Per-Location Classifiers for Visual Place Recognition

  • Original language description

    The aim of this work is to localize a query photograph by finding other images depicting the same place in a large geotagged image database. This is a challenging task due to changes in viewpoint, imaging conditions and the large size of the image database. The contribution of this work is two-fold. First, we cast the place recognition problem as a classification task and use the available geotags to train a classifier for each location in the database in a similar manner to per-exemplar SVMs in objectrecognition. Second, as only few positive training examples are available for each location, we propose a new approach to calibrate all the per-location SVM classifiers using only the negative examples. The calibration we propose relies on a significancemeasure essentially equivalent to the p-values classically used in statistical hypothesis testing. Experiments are performed on a database of 25,000 geotagged street view images of Pittsburgh and demonstrate improved place recognition ac

  • Czech name

  • Czech description

Classification

  • Type

    D - Article in proceedings

  • CEP classification

    JD - Use of computers, robotics and its application

  • OECD FORD branch

Result continuities

  • Project

    <a href="/en/project/7E13015" target="_blank" >7E13015: Planetary Robotics Data Exploitation</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>S - Specificky vyzkum na vysokych skolach

Others

  • Publication year

    2013

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Article name in the collection

    CVPR 2013: IEEE Computer Society Conference on Computer Vision and Pattern Recognition

  • ISBN

    978-0-7695-4989-7

  • ISSN

    1063-6919

  • e-ISSN

  • Number of pages

    8

  • Pages from-to

    907-914

  • Publisher name

    IEEE Computer Society

  • Place of publication

    Los Alamitos

  • Event location

    Portland

  • Event date

    Jun 23, 2013

  • Type of event by nationality

    WRD - Celosvětová akce

  • UT code for WoS article