Filters Design by Z Transformation and Pascal Matrix
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21230%2F13%3A00226786" target="_blank" >RIV/68407700:21230/13:00226786 - isvavai.cz</a>
Result on the web
<a href="http://dx.doi.org/10.2316/P.2013.804-014" target="_blank" >http://dx.doi.org/10.2316/P.2013.804-014</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.2316/P.2013.804-014" target="_blank" >10.2316/P.2013.804-014</a>
Alternative languages
Result language
angličtina
Original language name
Filters Design by Z Transformation and Pascal Matrix
Original language description
In the context of the digital filter design, a great deal of research has been done to facilitate their computation. The Pascal matrix defined in [1], [2] has provided its utility in this field. In this paper we summarize the direct transformation from low-pass continuous-time transfer function H(s) to discrete-time H(z) of the bandpass and bandstop transfer functions. This algorithm uses the Pascal matrix and is constructed from the rows of a Pascal triangle. The advantage of this method is that the inverse transformation is obtained with the Pascal matrix without computing the determinant of the system, which simplifies the process to obtain the associated analog transfer function H(s) if the discrete transfer function H(z) is known. Numerical example for matrices P, P1, Q and Q1 illustrate the practical utilization of this technique.
Czech name
—
Czech description
—
Classification
Type
D - Article in proceedings
CEP classification
JA - Electronics and optoelectronics
OECD FORD branch
—
Result continuities
Project
—
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2013
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Article name in the collection
MS & SIP 2013 - Modelling and Simulation & Signal and Image Processing
ISBN
978-0-88986-960-8
ISSN
—
e-ISSN
—
Number of pages
6
Pages from-to
339-344
Publisher name
Acta Press
Place of publication
Calgary
Event location
Banff
Event date
Jul 17, 2013
Type of event by nationality
WRD - Celosvětová akce
UT code for WoS article
—