Orthomodular Posets Related to Z2-Valued States
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21230%2F14%3A00222095" target="_blank" >RIV/68407700:21230/14:00222095 - isvavai.cz</a>
Result on the web
<a href="http://link.springer.com/article/10.1007%2Fs10773-013-1690-4" target="_blank" >http://link.springer.com/article/10.1007%2Fs10773-013-1690-4</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/s10773-013-1690-4" target="_blank" >10.1007/s10773-013-1690-4</a>
Alternative languages
Result language
angličtina
Original language name
Orthomodular Posets Related to Z2-Valued States
Original language description
We study orthocomplemented posets (certain quantum logics) that possess an abundance of Z 2-valued states. We first discuss their basic properties and, by means of examples, we illuminate intrinsic qualities of these orthocomplemented posets. We then address the problem of axiomatizability of our class of posets?a question that appears natural from the algebraic point of view. In the last section we show, as a main result, that supports of the posets endowed with symmetric difference constitute an important example of orthocomplemented posets under consideration. This result is obtained by a thorough analysis of certain types of ideals.
Czech name
—
Czech description
—
Classification
Type
J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)
CEP classification
BA - General mathematics
OECD FORD branch
—
Result continuities
Project
—
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2014
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
International Journal of Theoretical Physics
ISSN
0020-7748
e-ISSN
—
Volume of the periodical
53
Issue of the periodical within the volume
10
Country of publishing house
US - UNITED STATES
Number of pages
10
Pages from-to
3323-3332
UT code for WoS article
000341500900008
EID of the result in the Scopus database
—