Minimax Problems of Discrete Optimization Invariant under Majority Operators
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21230%2F14%3A00223269" target="_blank" >RIV/68407700:21230/14:00223269 - isvavai.cz</a>
Result on the web
<a href="http://dx.doi.org/10.1134/S0965542514080144" target="_blank" >http://dx.doi.org/10.1134/S0965542514080144</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1134/S0965542514080144" target="_blank" >10.1134/S0965542514080144</a>
Alternative languages
Result language
angličtina
Original language name
Minimax Problems of Discrete Optimization Invariant under Majority Operators
Original language description
A special class of discrete optimization problems that are stated as a minimax modification of the constraint satisfaction problem is studied. The minimax formulation of the problem generalizes the classical problem to realistic situations where the constraints order the elements of the set by the degree of their feasibility, rather than defining a dichotomy between feasible and infeasible subsets. The invariance of this ordering under an operator is defined, and the discrete minimization of functions invariant under majority operators is proved to have polynomial complexity. A particular algorithm for this minimization is described.
Czech name
—
Czech description
—
Classification
Type
J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)
CEP classification
JD - Use of computers, robotics and its application
OECD FORD branch
—
Result continuities
Project
<a href="/en/project/GAP202%2F12%2F2071" target="_blank" >GAP202/12/2071: Structured Statistical Models for Image Understanding</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2014
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Computational Mathematics and Mathematical Physics
ISSN
0965-5425
e-ISSN
—
Volume of the periodical
54
Issue of the periodical within the volume
8
Country of publishing house
RU - RUSSIAN FEDERATION
Number of pages
10
Pages from-to
1327-1336
UT code for WoS article
000341085500012
EID of the result in the Scopus database
—