*Sharing local information in scanning-window detection
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21230%2F14%3A00223835" target="_blank" >RIV/68407700:21230/14:00223835 - isvavai.cz</a>
Result on the web
—
DOI - Digital Object Identifier
—
Alternative languages
Result language
angličtina
Original language name
*Sharing local information in scanning-window detection
Original language description
*Object detection is a classic task in computer vision. WaldBoost algorithm is a state-of-the-art method for object detection due its high detection accuracy and real-time speed. However, since the traditional scanning window method classifies all the windows independently and doesn't make use of the information shared among overlapping windows,there is still a possibility of a significant speed-up by exploiting this property. We evaluate number of scanning patterns and predictors for spatially adjacentwindows, inspired by work of Hradiš et. al. Furthermore, we generalize this idea from spatially adjacent widows to multiple scales and propose {WaldBoost with Crosstalk Prediction}. Evaluating on a state-of-the-art dataset for face detection, we show that a significant speed-up can be achieved with {WaldBoost with Crosstalk Prediction} with no or a little loss of precision, outperforming the reference method of Hradiš et. al.
Czech name
—
Czech description
—
Classification
Type
V<sub>souhrn</sub> - Summary research report
CEP classification
JD - Use of computers, robotics and its application
OECD FORD branch
—
Result continuities
Project
—
Continuities
N - Vyzkumna aktivita podporovana z neverejnych zdroju
Others
Publication year
2014
Confidentiality
C - Předmět řešení projektu podléhá obchodnímu tajemství (§ 504 Občanského zákoníku), ale název projektu, cíle projektu a u ukončeného nebo zastaveného projektu zhodnocení výsledku řešení projektu (údaje P03, P04, P15, P19, P29, PN8) dodané do CEP, jsou upraveny tak, aby byly zveřejnitelné.
Data specific for result type
Number of pages
11
Place of publication
Praha
Publisher/client name
Toyota Motor Europe NV/SA TMEM
Version
—