Relaxation Heuristics for Multiagent Planning
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21230%2F14%3A00224542" target="_blank" >RIV/68407700:21230/14:00224542 - isvavai.cz</a>
Result on the web
<a href="http://www.aaai.org/ocs/index.php/ICAPS/ICAPS14/paper/view/7930" target="_blank" >http://www.aaai.org/ocs/index.php/ICAPS/ICAPS14/paper/view/7930</a>
DOI - Digital Object Identifier
—
Alternative languages
Result language
angličtina
Original language name
Relaxation Heuristics for Multiagent Planning
Original language description
Similarly to classical planning, in MA-Strips multiagent planning, heuristics significantly improve efficiency of search-based planners. Heuristics based on solving a relaxation of the original planning problem are intensively studied and well understood. In particular, frequently used is the delete relaxation, where all delete effects of actions are omitted. In this paper, we present a unified view on distribution of delete relaxation heuristics for multiagent planning. Until recently, the most commonapproach to adaptation of heuristics for multiagent planning was to compute the heuristic estimate using only a projection of the problem for a single agent. In this paper, we place such approach in the context of techniques which allow sharing more information among the agents and thus improve the heuristic estimates. We thoroughly experimentally evaluate properties of our distribution of additive, max and Fast-Forward relaxation heuristics in a planner based on distributed Best-First S
Czech name
—
Czech description
—
Classification
Type
D - Article in proceedings
CEP classification
IN - Informatics
OECD FORD branch
—
Result continuities
Project
<a href="/en/project/GA13-22125S" target="_blank" >GA13-22125S: Deterministic Domain-independent Multi-agent Planning</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2014
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Article name in the collection
Proceedings of the Twenty-Fourth International Conference on Automated Planning and Scheduling
ISBN
978-1-57735-660-8
ISSN
—
e-ISSN
—
Number of pages
9
Pages from-to
298-306
Publisher name
AAAI Press
Place of publication
Menlo Park, California
Event location
Portsmouth, NH
Event date
Jun 21, 2014
Type of event by nationality
WRD - Celosvětová akce
UT code for WoS article
—