All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Kan injectivity in order-enriched categories

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21230%2F15%3A00222681" target="_blank" >RIV/68407700:21230/15:00222681 - isvavai.cz</a>

  • Result on the web

    <a href="http://dx.doi.org/10.1017/S0960129514000024" target="_blank" >http://dx.doi.org/10.1017/S0960129514000024</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1017/S0960129514000024" target="_blank" >10.1017/S0960129514000024</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Kan injectivity in order-enriched categories

  • Original language description

    Continuous lattices were characterised by Martin Escardo as precisely those objects that are Kan-injective with respect to a certain class of morphisms. In this paper we study Kan-injectivity in general categories enriched in posets. For every class H ofmorphisms, we study the subcategory of all objects that are Kan-injective with respect to H and all morphisms preserving Kan extensions. For categories such as Top_0 and Pos, we prove that whenever H is a set of morphisms, the above subcategory is monadic, and the monad it creates is a Kock-Zoberlein monad. However, this does not generalise to proper classes, and we present a class of continuous mappings in Top_0 for which Kan-injectivity does not yield a monadic category.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)

  • CEP classification

    BA - General mathematics

  • OECD FORD branch

Result continuities

  • Project

    <a href="/en/project/GAP202%2F11%2F1632" target="_blank" >GAP202/11/1632: Algebraic Methods in Proof Theory</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2015

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Mathematical Structures in Computer Science

  • ISSN

    0960-1295

  • e-ISSN

  • Volume of the periodical

    25

  • Issue of the periodical within the volume

    1

  • Country of publishing house

    GB - UNITED KINGDOM

  • Number of pages

    40

  • Pages from-to

    6-45

  • UT code for WoS article

    000346274000002

  • EID of the result in the Scopus database