All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

A Simple Stochastic Algorithm for Structural Features Learning

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21230%2F15%3A00230194" target="_blank" >RIV/68407700:21230/15:00230194 - isvavai.cz</a>

  • Result on the web

    <a href="http://dx.doi.org/10.1007/978-3-319-16634-6_4" target="_blank" >http://dx.doi.org/10.1007/978-3-319-16634-6_4</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1007/978-3-319-16634-6_4" target="_blank" >10.1007/978-3-319-16634-6_4</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    A Simple Stochastic Algorithm for Structural Features Learning

  • Original language description

    A conceptually very simple unsupervised algorithm for learning structure in the form of a hierarchical probabilistic model is described in this paper. The proposed probabilistic model can easily work with any type of image primitives such as edge segments, non-max-suppressed filter set responses, texels, distinct image regions, SIFT features, etc., and is even capable of modelling non-rigid and/or visually variable objects. The model has recursive form and consists of sets of simple and gradually growing sub-models that are shared and learned individually in layers. The proposed probabilistic framework enables to exactly compute the probability of presence of a certain model, regardless on which layer it actually is. All these learned models constitutea rich set of independent structure elements of variable complexity that can be used as features in various recognition tasks.

  • Czech name

  • Czech description

Classification

  • Type

    D - Article in proceedings

  • CEP classification

    JD - Use of computers, robotics and its application

  • OECD FORD branch

Result continuities

  • Project

    <a href="/en/project/GAP103%2F12%2F1578" target="_blank" >GAP103/12/1578: Structural and Semantic Modeling of Architecture as a Digital Image Interpretation Problem</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2015

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Article name in the collection

    Proceedings of the ACCV2014 Workshop: the International Workshop on Feature and Similarity Learning for Computer Vision 2014 (FSLCV 2014)

  • ISBN

    978-3-319-16633-9

  • ISSN

    0302-9743

  • e-ISSN

  • Number of pages

    12

  • Pages from-to

    44-55

  • Publisher name

    Springer

  • Place of publication

    Cham

  • Event location

    Singapore

  • Event date

    Nov 1, 2014

  • Type of event by nationality

    WRD - Celosvětová akce

  • UT code for WoS article

    000362453400004